Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.04310
Cited By
MISSION: Ultra Large-Scale Feature Selection using Count-Sketches
12 June 2018
Amirali Aghazadeh
Ryan Spring
Daniel LeJeune
Gautam Dasarathy
Anshumali Shrivastava
Richard G. Baraniuk
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"MISSION: Ultra Large-Scale Feature Selection using Count-Sketches"
9 / 9 papers shown
Title
Improved Frequency Estimation Algorithms with and without Predictions
Anders Aamand
Justin Y. Chen
Huy Le Nguyen
Sandeep Silwal
A. Vakilian
109
7
0
12 Dec 2023
Asymptotically free sketched ridge ensembles: Risks, cross-validation, and tuning
Filip Szatkowski
Daniel LeJeune
77
10
0
06 Oct 2023
Scalable variable selection for two-view learning tasks with projection operators
S. Szedmák
Riikka Huusari
Tat Hong Duong Le
Juho Rousu
51
1
0
04 Jul 2023
Federated Gradient Matching Pursuit
Halyun Jeong
Deanna Needell
Jing Qin
FedML
80
1
0
20 Feb 2023
Asymptotics of the Sketched Pseudoinverse
Daniel LeJeune
Pratik V. Patil
Hamid Javadi
Richard G. Baraniuk
Robert Tibshirani
54
10
0
07 Nov 2022
On the Robustness of CountSketch to Adaptive Inputs
E. Cohen
Xin Lyu
Jelani Nelson
Tamas Sarlos
M. Shechner
Uri Stemmer
AAML
49
22
0
28 Feb 2022
CountSketches, Feature Hashing and the Median of Three
Kasper Green Larsen
Rasmus Pagh
Jakub Tvetek
45
9
0
03 Feb 2021
Quick and Robust Feature Selection: the Strength of Energy-efficient Sparse Training for Autoencoders
Zahra Atashgahi
Ghada Sokar
T. Lee
Elena Mocanu
Decebal Constantin Mocanu
Raymond N. J. Veldhuis
Mykola Pechenizkiy
94
42
0
01 Dec 2020
Compressing Gradient Optimizers via Count-Sketches
Ryan Spring
Anastasios Kyrillidis
Vijai Mohan
Anshumali Shrivastava
58
36
0
01 Feb 2019
1