ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.07470
  4. Cited By
Contrastive Explanations with Local Foil Trees

Contrastive Explanations with Local Foil Trees

19 June 2018
J. V. D. Waa
M. Robeer
J. Diggelen
Matthieu J. S. Brinkhuis
Mark Antonius Neerincx
    FAtt
ArXivPDFHTML

Papers citing "Contrastive Explanations with Local Foil Trees"

17 / 17 papers shown
Title
Contrastive Explanations That Anticipate Human Misconceptions Can Improve Human Decision-Making Skills
Contrastive Explanations That Anticipate Human Misconceptions Can Improve Human Decision-Making Skills
Zana Buçinca
S. Swaroop
Amanda E. Paluch
Finale Doshi-Velez
Krzysztof Z. Gajos
48
2
0
05 Oct 2024
Logic for Explainable AI
Logic for Explainable AI
Adnan Darwiche
30
8
0
09 May 2023
MACE: An Efficient Model-Agnostic Framework for Counterfactual
  Explanation
MACE: An Efficient Model-Agnostic Framework for Counterfactual Explanation
Wenzhuo Yang
Jia Li
Caiming Xiong
S. Hoi
CML
35
13
0
31 May 2022
Enriching Artificial Intelligence Explanations with Knowledge Fragments
Enriching Artificial Intelligence Explanations with Knowledge Fragments
Jože M. Rožanec
Elena Trajkova
I. Novalija
Patrik Zajec
K. Kenda
B. Fortuna
Dunja Mladenić
26
9
0
12 Apr 2022
On the Computation of Necessary and Sufficient Explanations
On the Computation of Necessary and Sufficient Explanations
Adnan Darwiche
Chunxi Ji
FAtt
13
19
0
20 Mar 2022
Human-Centered Concept Explanations for Neural Networks
Human-Centered Concept Explanations for Neural Networks
Chih-Kuan Yeh
Been Kim
Pradeep Ravikumar
FAtt
29
25
0
25 Feb 2022
First is Better Than Last for Language Data Influence
First is Better Than Last for Language Data Influence
Chih-Kuan Yeh
Ankur Taly
Mukund Sundararajan
Frederick Liu
Pradeep Ravikumar
TDI
25
20
0
24 Feb 2022
Explainability Is in the Mind of the Beholder: Establishing the
  Foundations of Explainable Artificial Intelligence
Explainability Is in the Mind of the Beholder: Establishing the Foundations of Explainable Artificial Intelligence
Kacper Sokol
Peter A. Flach
36
20
0
29 Dec 2021
Towards Relatable Explainable AI with the Perceptual Process
Towards Relatable Explainable AI with the Perceptual Process
Wencan Zhang
Brian Y. Lim
AAML
XAI
25
61
0
28 Dec 2021
On Quantitative Evaluations of Counterfactuals
On Quantitative Evaluations of Counterfactuals
Frederik Hvilshoj
Alexandros Iosifidis
Ira Assent
19
10
0
30 Oct 2021
Contrastive Explanations for Argumentation-Based Conclusions
Contrastive Explanations for Argumentation-Based Conclusions
A. Borg
Floris Bex
11
7
0
07 Jul 2021
Productivity, Portability, Performance: Data-Centric Python
Productivity, Portability, Performance: Data-Centric Python
Yiheng Wang
Yao Zhang
Yanzhang Wang
Yan Wan
Jiao Wang
Zhongyuan Wu
Yuhao Yang
Bowen She
52
94
0
01 Jul 2021
Counterfactual explanation of machine learning survival models
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CML
OffRL
24
19
0
26 Jun 2020
Directions for Explainable Knowledge-Enabled Systems
Directions for Explainable Knowledge-Enabled Systems
Shruthi Chari
Daniel Gruen
O. Seneviratne
D. McGuinness
XAI
16
32
0
17 Mar 2020
Foundations of Explainable Knowledge-Enabled Systems
Foundations of Explainable Knowledge-Enabled Systems
Shruthi Chari
Daniel Gruen
O. Seneviratne
D. McGuinness
31
28
0
17 Mar 2020
Weight of Evidence as a Basis for Human-Oriented Explanations
Weight of Evidence as a Basis for Human-Oriented Explanations
David Alvarez-Melis
Hal Daumé
Jennifer Wortman Vaughan
Hanna M. Wallach
XAI
FAtt
18
20
0
29 Oct 2019
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan Ö. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
122
297
0
17 Oct 2019
1