Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1806.08054
Cited By
Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization
21 June 2018
Jiaxiang Wu
Weidong Huang
Junzhou Huang
Tong Zhang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization"
50 / 120 papers shown
Title
Machine Learning and CPU (Central Processing Unit) Scheduling Co-Optimization over a Network of Computing Centers
Engineering applications of artificial intelligence (EAAI), 2025
Mohammadreza Doostmohammadian
Zulfiya R. Gabidullina
Hamid R. Rabiee
61
0
0
29 Oct 2025
Tight analyses of first-order methods with error feedback
Daniel Berg Thomsen
Adrien B. Taylor
Hadrien Hendrikx
199
1
0
05 Jun 2025
Protocol Models: Scaling Decentralized Training with Communication-Efficient Model Parallelism
Sameera Ramasinghe
Thalaiyasingam Ajanthan
Gil Avraham
Yan Zuo
Alexander Long
GNN
305
0
0
02 Jun 2025
γ
γ
γ
-FedHT: Stepsize-Aware Hard-Threshold Gradient Compression in Federated Learning
IEEE Conference on Computer Communications (IEEE INFOCOM), 2025
Rongwei Lu
Yutong Jiang
Jinrui Zhang
Chunyang Li
Yifei Zhu
Bin Chen
Zhi Wang
FedML
256
2
0
18 May 2025
Smoothed Normalization for Efficient Distributed Private Optimization
Egor Shulgin
Sarit Khirirat
Peter Richtárik
FedML
328
0
0
20 Feb 2025
MARINA-P: Superior Performance in Non-smooth Federated Optimization with Adaptive Stepsizes
Igor Sokolov
Peter Richtárik
263
1
0
22 Dec 2024
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Zhijie Chen
Qiaobo Li
A. Banerjee
FedML
364
0
0
11 Nov 2024
Error Feedback under
(
L
0
,
L
1
)
(L_0,L_1)
(
L
0
,
L
1
)
-Smoothness: Normalization and Momentum
Sarit Khirirat
Abdurakhmon Sadiev
Artem Riabinin
Eduard A. Gorbunov
Peter Richtárik
237
6
0
22 Oct 2024
FedAQ: Communication-Efficient Federated Edge Learning via Joint Uplink and Downlink Adaptive Quantization
Linping Qu
Shenghui Song
Chi-Ying Tsui
MQ
FedML
127
5
0
26 Jun 2024
Distributed Training of Large Graph Neural Networks with Variable Communication Rates
J. Cerviño
Md Asadullah Turja
Hesham Mostafa
N. Himayat
Alejandro Ribeiro
GNN
AI4CE
258
1
0
25 Jun 2024
Distributed Stochastic Gradient Descent with Staleness: A Stochastic Delay Differential Equation Based Framework
Siyuan Yu
Wei Chen
H. V. Poor
281
0
0
17 Jun 2024
Minimal Communication-Cost Statistical Learning
Romain Chor
Abdellatif Zaidi
Piotr Krasnowski
124
0
0
12 Jun 2024
Automated Federated Pipeline for Parameter-Efficient Fine-Tuning of Large Language Models
Zihan Fang
Zheng Lin
Zhe Chen
Xianhao Chen
Yue Gao
Yuguang Fang
211
50
0
09 Apr 2024
Communication-Efficient Large-Scale Distributed Deep Learning: A Comprehensive Survey
Feng Liang
Zhen Zhang
Haifeng Lu
Victor C. M. Leung
Yanyi Guo
Xiping Hu
GNN
255
19
0
09 Apr 2024
On the Convergence of Federated Learning Algorithms without Data Similarity
Ali Beikmohammadi
Sarit Khirirat
Sindri Magnússon
FedML
228
4
0
29 Feb 2024
Communication Efficient ConFederated Learning: An Event-Triggered SAGA Approach
Bin Wang
Jun Fang
Hongbin Li
Yonina C. Eldar
FedML
151
2
0
28 Feb 2024
Communication-Efficient Distributed Learning with Local Immediate Error Compensation
Yifei Cheng
Li Shen
Linli Xu
Xun Qian
Shiwei Wu
Yiming Zhou
Tie Zhang
Dacheng Tao
Enhong Chen
160
1
0
19 Feb 2024
RS-DGC: Exploring Neighborhood Statistics for Dynamic Gradient Compression on Remote Sensing Image Interpretation
IEEE Transactions on Geoscience and Remote Sensing (TGRS), 2023
Weiying Xie
Zixuan Wang
Haonan Qin
Daixun Li
Yunsong Li
163
3
0
29 Dec 2023
Contractive error feedback for gradient compression
Bingcong Li
Shuai Zheng
Parameswaran Raman
Anshumali Shrivastava
G. Giannakis
135
0
0
13 Dec 2023
Smoothed Gradient Clipping and Error Feedback for Distributed Optimization under Heavy-Tailed Noise
Shuhua Yu
D. Jakovetić
S. Kar
285
1
0
25 Oct 2023
CORE: Common Random Reconstruction for Distributed Optimization with Provable Low Communication Complexity
Pengyun Yue
Hanzheng Zhao
Cong Fang
Di He
Liwei Wang
Zhouchen Lin
Song-Chun Zhu
172
1
0
23 Sep 2023
FwdLLM: Efficient FedLLM using Forward Gradient
Mengwei Xu
Dongqi Cai
Yaozong Wu
Xiang Li
Shangguang Wang
FedML
206
34
0
26 Aug 2023
Stochastic Controlled Averaging for Federated Learning with Communication Compression
International Conference on Learning Representations (ICLR), 2023
Xinmeng Huang
Ping Li
Xiaoyun Li
319
243
0
16 Aug 2023
Adaptive Message Quantization and Parallelization for Distributed Full-graph GNN Training
Conference on Machine Learning and Systems (MLSys), 2023
Borui Wan
Juntao Zhao
Chuan Wu
GNN
126
21
0
02 Jun 2023
Clip21: Error Feedback for Gradient Clipping
Sarit Khirirat
Eduard A. Gorbunov
Samuel Horváth
Rustem Islamov
Fakhri Karray
Peter Richtárik
197
14
0
30 May 2023
Sharpened Lazy Incremental Quasi-Newton Method
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Aakash Lahoti
Spandan Senapati
K. Rajawat
Alec Koppel
279
2
0
26 May 2023
Unbiased Compression Saves Communication in Distributed Optimization: When and How Much?
Neural Information Processing Systems (NeurIPS), 2023
Yutong He
Xinmeng Huang
Kun Yuan
218
16
0
25 May 2023
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Yutong He
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
327
9
0
12 May 2023
Compressed Regression over Adaptive Networks
IEEE Transactions on Signal and Information Processing over Networks (TSIPN), 2023
Marco Carpentiero
Vincenzo Matta
Ali H. Sayed
138
3
0
07 Apr 2023
FedREP: A Byzantine-Robust, Communication-Efficient and Privacy-Preserving Framework for Federated Learning
Yi-Rui Yang
Kun Wang
Wulu Li
FedML
198
6
0
09 Mar 2023
Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification in the Presence of Data Heterogeneity
Richeng Jin
Xiaofan He
C. Zhong
Zhaoyang Zhang
Tony Q.S. Quek
H. Dai
FedML
142
2
0
19 Feb 2023
Federated Few-Shot Learning for Mobile NLP
ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom), 2022
Dongqi Cai
Shangguang Wang
Yaozong Wu
F. Lin
Mengwei Xu
FedML
193
20
0
12 Dec 2022
GlueFL: Reconciling Client Sampling and Model Masking for Bandwidth Efficient Federated Learning
Conference on Machine Learning and Systems (MLSys), 2022
Shiqi He
Qifan Yan
Feijie Wu
Lanjun Wang
Mathias Lécuyer
Ivan Beschastnikh
FedML
186
11
0
03 Dec 2022
Towards Practical Few-shot Federated NLP
Dongqi Cai
Yaozong Wu
Haitao Yuan
Shangguang Wang
F. Lin
Mengwei Xu
FedML
261
5
0
01 Dec 2022
Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression
Xiaoyun Li
Ping Li
FedML
164
6
0
25 Nov 2022
Adaptive Top-K in SGD for Communication-Efficient Distributed Learning
Global Communications Conference (GLOBECOM), 2022
Mengzhe Ruan
Guangfeng Yan
Yuanzhang Xiao
Linqi Song
Weitao Xu
139
3
0
24 Oct 2022
Personalized Federated Learning with Communication Compression
El Houcine Bergou
Konstantin Burlachenko
Aritra Dutta
Peter Richtárik
FedML
190
10
0
12 Sep 2022
Quantized Adaptive Subgradient Algorithms and Their Applications
Ke Xu
Jianqiao Wangni
Yifan Zhang
Deheng Ye
Jiaxiang Wu
P. Zhao
110
0
0
11 Aug 2022
Lower Bounds and Nearly Optimal Algorithms in Distributed Learning with Communication Compression
Neural Information Processing Systems (NeurIPS), 2022
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
291
31
0
08 Jun 2022
ByteComp: Revisiting Gradient Compression in Distributed Training
Zhuang Wang
Yanghua Peng
Yibo Zhu
T. Ng
168
2
0
28 May 2022
FedAdapter: Efficient Federated Learning for Modern NLP
Dongqi Cai
Yaozong Wu
Shangguang Wang
F. Lin
Mengwei Xu
FedML
AI4CE
160
34
0
20 May 2022
On Distributed Adaptive Optimization with Gradient Compression
International Conference on Learning Representations (ICLR), 2022
Xiaoyun Li
Belhal Karimi
Ping Li
141
31
0
11 May 2022
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
242
11
0
08 May 2022
Secure Distributed/Federated Learning: Prediction-Privacy Trade-Off for Multi-Agent System
International Symposium on Information Theory (ISIT), 2022
Mohamed Ridha Znaidi
Gaurav Gupta
P. Bogdan
FedML
99
2
0
24 Apr 2022
Adaptive Differential Filters for Fast and Communication-Efficient Federated Learning
Daniel Becking
H. Kirchhoffer
G. Tech
Paul Haase
Karsten Müller
H. Schwarz
Wojciech Samek
FedML
134
4
0
09 Apr 2022
Decentralized Multi-Task Stochastic Optimization With Compressed Communications
Navjot Singh
Xuanyu Cao
Suhas Diggavi
Tamer Basar
141
12
0
23 Dec 2021
Collaborative Learning over Wireless Networks: An Introductory Overview
Emre Ozfatura
Deniz Gunduz
H. Vincent Poor
140
12
0
07 Dec 2021
Distributed Adaptive Learning Under Communication Constraints
IEEE Open Journal of Signal Processing (JOSP), 2021
Marco Carpentiero
Vincenzo Matta
Ali H. Sayed
125
19
0
03 Dec 2021
Finite-Time Consensus Learning for Decentralized Optimization with Nonlinear Gossiping
Junya Chen
Sijia Wang
Lawrence Carin
Chenyang Tao
116
3
0
04 Nov 2021
Permutation Compressors for Provably Faster Distributed Nonconvex Optimization
Rafal Szlendak
Alexander Tyurin
Peter Richtárik
301
39
0
07 Oct 2021
1
2
3
Next