ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.00236
  4. Cited By
Feature Optimization for Atomistic Machine Learning Yields A Data-Driven
  Construction of the Periodic Table of the Elements
v1v2 (latest)

Feature Optimization for Atomistic Machine Learning Yields A Data-Driven Construction of the Periodic Table of the Elements

30 June 2018
M. J. Willatt
Félix Musil
Michele Ceriotti
ArXiv (abs)PDFHTML

Papers citing "Feature Optimization for Atomistic Machine Learning Yields A Data-Driven Construction of the Periodic Table of the Elements"

9 / 9 papers shown
Title
A smooth basis for atomistic machine learning
A smooth basis for atomistic machine learning
Filippo Bigi
Kevin K. Huguenin-Dumittan
Michele Ceriotti
D. Manolopoulos
61
6
0
05 Sep 2022
Optimal radial basis for density-based atomic representations
Optimal radial basis for density-based atomic representations
Alexander Goscinski
Félix Musil
Sergey Pozdnyakov
Michele Ceriotti
64
18
0
18 May 2021
Multi-scale approach for the prediction of atomic scale properties
Multi-scale approach for the prediction of atomic scale properties
Andrea Grisafi
Jigyasa Nigam
Michele Ceriotti
41
31
0
27 Aug 2020
Learning the electronic density of states in condensed matter
Learning the electronic density of states in condensed matter
Chiheb Ben Mahmoud
A. Anelli
Gábor Csányi
Michele Ceriotti
42
55
0
21 Jun 2020
Predicting molecular dipole moments by combining atomic partial charges
  and atomic dipoles
Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles
M. Veit
D. Wilkins
Yang Yang
R. DiStasio
Michele Ceriotti
78
94
0
27 Mar 2020
Representations of molecules and materials for interpolation of
  quantum-mechanical simulations via machine learning
Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning
Marcel F. Langer
Alex Goessmann
M. Rupp
AI4CE
73
99
0
26 Mar 2020
DScribe: Library of Descriptors for Machine Learning in Materials
  Science
DScribe: Library of Descriptors for Machine Learning in Materials Science
Lauri Himanen
M. Jäger
Eiaki V. Morooka
F. F. Canova
Y. S. Ranawat
D. Gao
Patrick Rinke
A. Foster
69
591
0
18 Apr 2019
Compressing physical properties of atomic species for improving
  predictive chemistry
Compressing physical properties of atomic species for improving predictive chemistry
John E. Herr
Kevin J Koh
Kun Yao
John A. Parkhill
AI4CE
55
20
0
31 Oct 2018
Hierarchical Visualization of Materials Space with Graph Convolutional
  Neural Networks
Hierarchical Visualization of Materials Space with Graph Convolutional Neural Networks
T. Xie
Jeffrey C. Grossman
AI4CE
42
65
0
09 Jul 2018
1