Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.01647
Cited By
Privacy Amplification by Subsampling: Tight Analyses via Couplings and Divergences
4 July 2018
Borja Balle
Gilles Barthe
Marco Gaboardi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Privacy Amplification by Subsampling: Tight Analyses via Couplings and Divergences"
50 / 104 papers shown
Title
When Does Differentially Private Learning Not Suffer in High Dimensions?
Xuechen Li
Daogao Liu
Tatsunori Hashimoto
Huseyin A. Inan
Janardhan Kulkarni
Y. Lee
Abhradeep Thakurta
43
58
0
01 Jul 2022
Libra: High-Utility Anonymization of Event Logs for Process Mining via Subsampling
Gamal Elkoumy
Marlon Dumas
25
6
0
27 Jun 2022
Walking to Hide: Privacy Amplification via Random Message Exchanges in Network
Hao Wu
O. Ohrimenko
Anthony Wirth
FedML
32
1
0
20 Jun 2022
Analytical Composition of Differential Privacy via the Edgeworth Accountant
Hua Wang
Sheng-yang Gao
Huanyu Zhang
Milan Shen
Weijie J. Su
FedML
36
21
0
09 Jun 2022
Dimension Independent Generalization of DP-SGD for Overparameterized Smooth Convex Optimization
Yi Ma
T. V. Marinov
Tong Zhang
30
8
0
03 Jun 2022
On the Privacy Properties of GAN-generated Samples
Zinan Lin
Vyas Sekar
Giulia Fanti
PICV
24
26
0
03 Jun 2022
Differentially Private Shapley Values for Data Evaluation
Lauren Watson
R. Andreeva
Hao Yang
Rik Sarkar
TDI
FAtt
FedML
23
6
0
01 Jun 2022
Private Federated Submodel Learning with Sparsification
Sajani Vithana
S. Ulukus
FedML
33
10
0
31 May 2022
Provably Confidential Language Modelling
Xuandong Zhao
Lei Li
Yu Wang
MU
39
15
0
04 May 2022
Training a Tokenizer for Free with Private Federated Learning
Eugene Bagdasaryan
Congzheng Song
Rogier van Dalen
M. Seigel
Áine Cahill
FedML
27
5
0
15 Mar 2022
Differential Privacy Amplification in Quantum and Quantum-inspired Algorithms
Armando Angrisani
Mina Doosti
E. Kashefi
24
12
0
07 Mar 2022
Continual and Sliding Window Release for Private Empirical Risk Minimization
Lauren Watson
Abhirup Ghosh
Benedek Rozemberczki
Rik Sarkar
27
0
0
07 Mar 2022
Private Quantiles Estimation in the Presence of Atoms
Clément Lalanne
C. Gastaud
Nicolas Grislain
Aurélien Garivier
Rémi Gribonval
26
8
0
15 Feb 2022
Over-the-Air Ensemble Inference with Model Privacy
Selim F. Yilmaz
Burak Hasircioglu
Deniz Gunduz
FedML
40
23
0
07 Feb 2022
Gradient Leakage Attack Resilient Deep Learning
Wenqi Wei
Ling Liu
SILM
PILM
AAML
32
48
0
25 Dec 2021
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi Ma
Zhao Song
Guang Lin
FedML
35
16
0
09 Dec 2021
Improving Differentially Private SGD via Randomly Sparsified Gradients
Junyi Zhu
Matthew B. Blaschko
32
5
0
01 Dec 2021
Don't Generate Me: Training Differentially Private Generative Models with Sinkhorn Divergence
Tianshi Cao
Alex Bie
Arash Vahdat
Sanja Fidler
Karsten Kreis
SyDa
DiffM
19
71
0
01 Nov 2021
DP-XGBoost: Private Machine Learning at Scale
Cheng Cheng
Wei Dai
22
8
0
25 Oct 2021
Differentially Private Coordinate Descent for Composite Empirical Risk Minimization
Paul Mangold
A. Bellet
Joseph Salmon
Marc Tommasi
39
14
0
22 Oct 2021
Combining Differential Privacy and Byzantine Resilience in Distributed SGD
R. Guerraoui
Nirupam Gupta
Rafael Pinot
Sébastien Rouault
John Stephan
FedML
43
4
0
08 Oct 2021
Hyperparameter Tuning with Renyi Differential Privacy
Nicolas Papernot
Thomas Steinke
135
120
0
07 Oct 2021
Releasing Graph Neural Networks with Differential Privacy Guarantees
Iyiola E. Olatunji
Thorben Funke
Megha Khosla
42
45
0
18 Sep 2021
Random Sampling Plus Fake Data: Multidimensional Frequency Estimates With Local Differential Privacy
Héber H. Arcolezi
Jean-François Couchot
Bechara al Bouna
Xiaokui Xiao
30
27
0
15 Sep 2021
Selective Differential Privacy for Language Modeling
Weiyan Shi
Aiqi Cui
Evan Li
R. Jia
Zhou Yu
20
68
0
30 Aug 2021
Large-Scale Differentially Private BERT
Rohan Anil
Badih Ghazi
Vineet Gupta
Ravi Kumar
Pasin Manurangsi
41
132
0
03 Aug 2021
Private Retrieval, Computing and Learning: Recent Progress and Future Challenges
S. Ulukus
Salman Avestimehr
Michael C. Gastpar
S. Jafar
Ravi Tandon
Chao Tian
FedML
35
64
0
30 Jul 2021
Optimal Accounting of Differential Privacy via Characteristic Function
Yuqing Zhu
Jinshuo Dong
Yu Wang
18
98
0
16 Jun 2021
Differentially Private Fractional Frequency Moments Estimation with Polylogarithmic Space
Lun Wang
I. Pinelis
D. Song
23
16
0
26 May 2021
A Nearly Instance-optimal Differentially Private Mechanism for Conjunctive Queries
Wei Dong
K. Yi
24
23
0
12 May 2021
Privacy Amplification for Federated Learning via User Sampling and Wireless Aggregation
Mohamed Seif
Wei-Ting Chang
Ravi Tandon
FedML
31
45
0
02 Mar 2021
Machine Unlearning via Algorithmic Stability
Enayat Ullah
Tung Mai
Anup B. Rao
Ryan Rossi
R. Arora
35
103
0
25 Feb 2021
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for Private Learning
Da Yu
Huishuai Zhang
Wei Chen
Tie-Yan Liu
FedML
SILM
94
111
0
25 Feb 2021
Differential Privacy for Government Agencies -- Are We There Yet?
Joerg Drechsler
31
20
0
17 Feb 2021
Federated Intrusion Detection for IoT with Heterogeneous Cohort Privacy
Ajesh Koyatan Chathoth
Abhyuday N. Jagannatha
Stephen Lee
23
14
0
25 Jan 2021
Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning
Milad Nasr
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Nicholas Carlini
MIACV
FedML
82
216
0
11 Jan 2021
Privacy Amplification by Decentralization
Edwige Cyffers
A. Bellet
FedML
54
39
0
09 Dec 2020
Federated Model Distillation with Noise-Free Differential Privacy
Lichao Sun
Lingjuan Lyu
FedML
34
106
0
11 Sep 2020
Differentially Private Accelerated Optimization Algorithms
Nurdan Kuru
cS. .Ilker Birbil
Mert Gurbuzbalaban
S. Yıldırım
32
23
0
05 Aug 2020
Federated Learning with Sparsification-Amplified Privacy and Adaptive Optimization
Rui Hu
Yanmin Gong
Yuanxiong Guo
FedML
34
55
0
01 Aug 2020
Differentially private cross-silo federated learning
Mikko A. Heikkilä
A. Koskela
Kana Shimizu
Samuel Kaski
Antti Honkela
FedML
29
24
0
10 Jul 2020
Towards practical differentially private causal graph discovery
Lun Wang
Qi Pang
D. Song
31
13
0
15 Jun 2020
Near Instance-Optimality in Differential Privacy
Hilal Asi
John C. Duchi
26
38
0
16 May 2020
DP-Cryptography: Marrying Differential Privacy and Cryptography in Emerging Applications
Sameer Wagh
Xi He
Ashwin Machanavajjhala
Prateek Mittal
33
21
0
19 Apr 2020
A Better Bound Gives a Hundred Rounds: Enhanced Privacy Guarantees via
f
f
f
-Divergences
S. Asoodeh
Jiachun Liao
Flavio du Pin Calmon
O. Kosut
Lalitha Sankar
FedML
30
38
0
16 Jan 2020
Encode, Shuffle, Analyze Privacy Revisited: Formalizations and Empirical Evaluation
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Shuang Song
Kunal Talwar
Abhradeep Thakurta
34
83
0
10 Jan 2020
Federated Learning with Bayesian Differential Privacy
Aleksei Triastcyn
Boi Faltings
FedML
19
174
0
22 Nov 2019
Improved Differentially Private Decentralized Source Separation for fMRI Data
H. Imtiaz
Jafar Mohammadi
Rogers F. Silva
Bradley T. Baker
Sergey Plis
Anand D. Sarwate
Vince D. Calhoun
OOD
23
5
0
28 Oct 2019
Privacy-preserving Active Learning on Sensitive Data for User Intent Classification
Oluwaseyi Feyisetan
Thomas Drake
Borja Balle
Tom Diethe
22
10
0
26 Mar 2019
The Privacy Blanket of the Shuffle Model
Borja Balle
James Bell
Adria Gascon
Kobbi Nissim
FedML
42
236
0
07 Mar 2019
Previous
1
2
3
Next