Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1807.02621
Cited By
Reservoir Computing Universality With Stochastic Inputs
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2018
7 July 2018
Lukas Gonon
Juan-Pablo Ortega
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Reservoir Computing Universality With Stochastic Inputs"
50 / 53 papers shown
Frozen in Time: Parameter-Efficient Time Series Transformers via Reservoir-Induced Feature Expansion and Fixed Random Dynamics
Pradeep Singh
Mehak Sharma
Anupriya Dey
Balasubramanian Raman
AI4TS
145
0
0
25 Aug 2025
A Solvable Molecular Switch Model for Stable Temporal Information Processing
H. I. Nurdin
C. A. Nijhuis
118
0
0
21 Aug 2025
Contraction, Criticality, and Capacity: A Dynamical-Systems Perspective on Echo-State Networks
Pradeep Singh
Lavanya Sankaranarayanan
Balasubramanian Raman
118
0
0
24 Jul 2025
Adaptive Nonlinear Vector Autoregression: Robust Forecasting for Noisy Chaotic Time Series
Azimov Sherkhon
Susana Lopez-Moreno
Eric Dolores-Cuenca
Sieun Lee
Sangil Kim
81
0
0
11 Jul 2025
State-space systems as dynamic generative models
Proceedings of the Royal Society A (Proc. R. Soc. A), 2024
Juan-Pablo Ortega
Florian Rossmannek
374
4
0
13 Mar 2025
Asymptotic evaluation of the information processing capacity in reservoir computing
Neurocomputing (Neurocomputing), 2025
Yohei Saito
192
1
0
15 Feb 2025
RandNet-Parareal: a time-parallel PDE solver using Random Neural Networks
Neural Information Processing Systems (NeurIPS), 2024
Guglielmo Gattiglio
Lyudmila Grigoryeva
M. Tamborrino
268
5
0
09 Nov 2024
Universality of Real Minimal Complexity Reservoir
AAAI Conference on Artificial Intelligence (AAAI), 2024
Robert Simon Fong
Boyu Li
Peter Tiňo
139
4
0
15 Aug 2024
Unsupervised Reservoir Computing for Multivariate Denoising of Severely Contaminated Signals
Jaesung Choi
Pilwon Kim
123
0
0
26 Jul 2024
Universal randomised signatures for generative time series modelling
Francesca Biagini
Lukas Gonon
Niklas Walter
254
7
0
14 Jun 2024
Stochastic Reservoir Computers
Peter J. Ehlers
H. Nurdin
Daniel Soh
306
10
0
20 May 2024
Controlling Chaos Using Edge Computing Hardware
Nature Communications (Nat. Commun.), 2024
Robert M Kent
W. A. S. Barbosa
Daniel J Gauthier
239
18
0
08 May 2024
Positional Encoding Helps Recurrent Neural Networks Handle a Large Vocabulary
Takashi Morita
445
8
0
31 Jan 2024
Estimation of AMOC transition probabilities using a machine learning based rare-event algorithm
Valérian Jacques-Dumas
R. M. Westen
Henk A. Dijkstra
168
4
0
19 Jan 2024
Improving the Performance of Echo State Networks Through State Feedback
Peter J. Ehlers
H. Nurdin
Daniel Soh
124
0
0
23 Dec 2023
Refined Kolmogorov Complexity of Analog, Evolving and Stochastic Recurrent Neural Networks
Jérémie Cabessa
Y. Strozecki
116
2
0
29 Sep 2023
Simple Cycle Reservoirs are Universal
Journal of machine learning research (JMLR), 2023
Boyu Li
Robert Simon Fong
Peter Tivno
215
11
0
21 Aug 2023
A Survey on Reservoir Computing and its Interdisciplinary Applications Beyond Traditional Machine Learning
IEEE Access (IEEE Access), 2023
Heng Zhang
Danilo Vasconcellos Vargas
AI4CE
250
40
0
27 Jul 2023
Universal Approximation Theorem and error bounds for quantum neural networks and quantum reservoirs
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2023
Lukas Gonon
A. Jacquier
305
21
0
24 Jul 2023
Inverse Approximation Theory for Nonlinear Recurrent Neural Networks
International Conference on Learning Representations (ICLR), 2023
Shida Wang
Zhong Li
Qianxiao Li
374
10
0
30 May 2023
Memory of recurrent networks: Do we compute it right?
Journal of machine learning research (JMLR), 2023
Giovanni Ballarin
Lyudmila Grigoryeva
Juan-Pablo Ortega
212
6
0
02 May 2023
Reservoir Computing with Error Correction: Long-term Behaviors of Stochastic Dynamical Systems
Cheng Fang
Yubin Lu
Ting Gao
Jinqiao Duan
196
4
0
01 May 2023
Infinite-dimensional reservoir computing
Neural Networks (Neural Netw.), 2023
Lukas Gonon
Lyudmila Grigoryeva
Juan-Pablo Ortega
273
11
0
02 Apr 2023
A Brief Survey on the Approximation Theory for Sequence Modelling
Journal of Machine Learning (JML), 2023
Hao Jiang
Qianxiao Li
Zhong Li
Shida Wang
AI4TS
260
14
0
27 Feb 2023
Effect of temporal resolution on the reproduction of chaotic dynamics via reservoir computing
Chaos (Chaos), 2023
Kohei Tsuchiyama
André Röhm
Takatomo Mihana
R. Horisaki
Makoto Naruse
191
8
0
27 Jan 2023
Reservoir kernels and Volterra series
Lukas Gonon
Lyudmila Grigoryeva
Juan-Pablo Ortega
280
10
0
30 Dec 2022
Universal Time-Uniform Trajectory Approximation for Random Dynamical Systems with Recurrent Neural Networks
A. Bishop
179
1
0
15 Nov 2022
Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis
Luca Galimberti
Anastasis Kratsios
Giulia Livieri
OOD
398
19
0
24 Oct 2022
Catch-22s of reservoir computing
Physical Review Research (Phys. Rev. Res.), 2022
Yuanzhao Zhang
Sean P. Cornelius
289
19
0
18 Oct 2022
Transport in reservoir computing
G. Manjunath
Juan-Pablo Ortega
169
7
0
16 Sep 2022
Learning unseen coexisting attractors
Chaos (Chaos), 2022
D. Gauthier
Ingo Fischer
André Röhm
195
27
0
28 Jul 2022
Universality and approximation bounds for echo state networks with random weights
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022
Zhen Li
Yunfei Yang
256
8
0
12 Jun 2022
Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer
Mathematical Finance (Math. Finance), 2022
Beatrice Acciaio
Anastasis Kratsios
G. Pammer
OOD
421
28
0
31 Jan 2022
Master memory function for delay-based reservoir computers with single-variable dynamics
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2021
F. Köster
S. Yanchuk
K. Lüdge
181
7
0
28 Aug 2021
Nonlinear Autoregression with Convergent Dynamics on Novel Computational Platforms
Jiayin Chen
H. Nurdin
115
6
0
18 Aug 2021
Learning strange attractors with reservoir systems
Lyudmila Grigoryeva
Allen G. Hart
Juan-Pablo Ortega
206
32
0
11 Aug 2021
Model-free inference of unseen attractors: Reconstructing phase space features from a single noisy trajectory using reservoir computing
Chaos (Chaos), 2021
André Röhm
D. Gauthier
Ingo Fischer
274
46
0
06 Aug 2021
Next Generation Reservoir Computing
Nature Communications (Nat Commun), 2021
D. Gauthier
Erik Bollt
Aaron Griffith
W. A. S. Barbosa
310
521
0
14 Jun 2021
Optimal Stopping via Randomized Neural Networks
Frontiers of Mathematical Finance (FMF), 2021
Calypso Herrera
Florian Krack
P. Ruyssen
Josef Teichmann
233
42
0
28 Apr 2021
Fading memory echo state networks are universal
Lukas Gonon
Juan-Pablo Ortega
220
68
0
22 Oct 2020
Model-Free Control of Dynamical Systems with Deep Reservoir Computing
D. Canaday
Andrew Pomerance
D. Gauthier
112
45
0
05 Oct 2020
Discrete-time signatures and randomness in reservoir computing
IEEE Transactions on Neural Networks and Learning Systems (IEEE TNNLS), 2020
Christa Cuchiero
Lukas Gonon
Lyudmila Grigoryeva
Juan-Pablo Ortega
Josef Teichmann
159
53
0
17 Sep 2020
Insight into Delay Based Reservoir Computing via Eigenvalue Analysis
F. Köster
S. Yanchuk
K. Lüdge
183
0
0
16 Sep 2020
Dimension reduction in recurrent networks by canonicalization
The Journal of Geometric Mechanics (J. Geom. Mech.), 2020
Lyudmila Grigoryeva
Juan-Pablo Ortega
196
23
0
23 Jul 2020
Physical reservoir computing -- An introductory perspective
Japanese Journal of Applied Physics (JJAP), 2020
Kohei Nakajima
186
360
0
03 May 2020
Memory and forecasting capacities of nonlinear recurrent networks
Lukas Gonon
Lyudmila Grigoryeva
Juan-Pablo Ortega
AI4TS
295
28
0
22 Apr 2020
Approximation Bounds for Random Neural Networks and Reservoir Systems
The Annals of Applied Probability (Ann. Appl. Probab.), 2020
Lukas Gonon
Lyudmila Grigoryeva
Juan-Pablo Ortega
249
79
0
14 Feb 2020
Risk bounds for reservoir computing
Lukas Gonon
Lyudmila Grigoryeva
Juan-Pablo Ortega
234
46
0
30 Oct 2019
Backpropagation Algorithms and Reservoir Computing in Recurrent Neural Networks for the Forecasting of Complex Spatiotemporal Dynamics
Neural Networks (NN), 2019
Pantelis R. Vlachas
Jaideep Pathak
Brian R. Hunt
T. Sapsis
M. Girvan
Edward Ott
Petros Koumoutsakos
AI4TS
315
449
0
09 Oct 2019
Dynamical Systems as Temporal Feature Spaces
Journal of machine learning research (JMLR), 2019
Peter Tiño
323
26
0
15 Jul 2019
1
2
Next