ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.03520
13
255

Multiresolution Tree Networks for 3D Point Cloud Processing

10 July 2018
Matheus Gadelha
Rui Wang
Subhransu Maji
    3DV
    3DPC
ArXivPDFHTML
Abstract

We present multiresolution tree-structured networks to process point clouds for 3D shape understanding and generation tasks. Our network represents a 3D shape as a set of locality-preserving 1D ordered list of points at multiple resolutions. This allows efficient feed-forward processing through 1D convolutions, coarse-to-fine analysis through a multi-grid architecture, and it leads to faster convergence and small memory footprint during training. The proposed tree-structured encoders can be used to classify shapes and outperform existing point-based architectures on shape classification benchmarks, while tree-structured decoders can be used for generating point clouds directly and they outperform existing approaches for image-to-shape inference tasks learned using the ShapeNet dataset. Our model also allows unsupervised learning of point-cloud based shapes by using a variational autoencoder, leading to higher-quality generated shapes.

View on arXiv
Comments on this paper