ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.04369
17
39

Differentially-Private "Draw and Discard" Machine Learning

11 July 2018
Vasyl Pihur
Aleksandra Korolova
Frederick Liu
Subhash Sankuratripati
M. Yung
Dachuan Huang
Ruogu Zeng
    FedML
ArXivPDFHTML
Abstract

In this work, we propose a novel framework for privacy-preserving client-distributed machine learning. It is motivated by the desire to achieve differential privacy guarantees in the local model of privacy in a way that satisfies all systems constraints using asynchronous client-server communication and provides attractive model learning properties. We call it "Draw and Discard" because it relies on random sampling of models for load distribution (scalability), which also provides additional server-side privacy protections and improved model quality through averaging. We present the mechanics of client and server components of "Draw and Discard" and demonstrate how the framework can be applied to learning Generalized Linear models. We then analyze the privacy guarantees provided by our approach against several types of adversaries and showcase experimental results that provide evidence for the framework's viability in practical deployments.

View on arXiv
Comments on this paper