Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.04369
Cited By
Differentially-Private "Draw and Discard" Machine Learning
11 July 2018
Vasyl Pihur
Aleksandra Korolova
Frederick Liu
Subhash Sankuratripati
M. Yung
Dachuan Huang
Ruogu Zeng
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Differentially-Private "Draw and Discard" Machine Learning"
4 / 4 papers shown
Title
Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy
Zhifeng Jiang
Wei Wang
Ruichuan Chen
43
6
0
26 Sep 2022
Differentially Private Bayesian Inference for Generalized Linear Models
Tejas D. Kulkarni
Joonas Jälkö
A. Koskela
Samuel Kaski
Antti Honkela
35
31
0
01 Nov 2020
Privacy-Preserving Boosting in the Local Setting
Sen Wang
J.Morris Chang
FedML
13
3
0
06 Feb 2020
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
56
1,393
0
03 Dec 2018
1