Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.04640
Cited By
Automatically Composing Representation Transformations as a Means for Generalization
12 July 2018
Michael Chang
Abhishek Gupta
Sergey Levine
Thomas L. Griffiths
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Automatically Composing Representation Transformations as a Means for Generalization"
20 / 20 papers shown
Title
Breaking Neural Network Scaling Laws with Modularity
Akhilan Boopathy
Sunshine Jiang
William Yue
Jaedong Hwang
Abhiram Iyer
Ila Fiete
OOD
39
2
0
09 Sep 2024
Neural Relational Inference with Fast Modular Meta-learning
Ferran Alet
Erica Weng
Tomás Lozano Pérez
L. Kaelbling
52
55
0
10 Oct 2023
A Short Survey of Systematic Generalization
Yuanpeng Li
AI4CE
29
1
0
22 Nov 2022
How to Reuse and Compose Knowledge for a Lifetime of Tasks: A Survey on Continual Learning and Functional Composition
Jorge Armando Mendez Mendez
Eric Eaton
KELM
CLL
26
27
0
15 Jul 2022
Dynamic Inference with Neural Interpreters
Nasim Rahaman
Muhammad Waleed Gondal
S. Joshi
Peter V. Gehler
Yoshua Bengio
Francesco Locatello
Bernhard Schölkopf
34
31
0
12 Oct 2021
Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment
Michael Chang
Sid Kaushik
Sergey Levine
Thomas L. Griffiths
18
8
0
28 Jun 2021
Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?
Dinghuai Zhang
Kartik Ahuja
Yilun Xu
Yisen Wang
Aaron Courville
OOD
20
95
0
05 Jun 2021
Clusterability in Neural Networks
Daniel Filan
Stephen Casper
Shlomi Hod
Cody Wild
Andrew Critch
Stuart J. Russell
GNN
24
30
0
04 Mar 2021
Continual Learning in Low-rank Orthogonal Subspaces
Arslan Chaudhry
Naeemullah Khan
P. Dokania
Philip H. S. Torr
CLL
33
113
0
22 Oct 2020
Are Neural Nets Modular? Inspecting Functional Modularity Through Differentiable Weight Masks
Róbert Csordás
Sjoerd van Steenkiste
Jürgen Schmidhuber
21
87
0
05 Oct 2020
Understanding Human Intelligence through Human Limitations
Thomas L. Griffiths
17
64
0
29 Sep 2020
Multi-Task Learning with Deep Neural Networks: A Survey
M. Crawshaw
CVBM
16
608
0
10 Sep 2020
The Scattering Compositional Learner: Discovering Objects, Attributes, Relationships in Analogical Reasoning
Yuhuai Wu
Honghua Dong
Roger C. Grosse
Jimmy Ba
CoGe
22
66
0
08 Jul 2020
A Study of Compositional Generalization in Neural Models
Tim Klinger
D. Adjodah
Vincent Marois
Joshua Joseph
Matthew D Riemer
Alex Pentland
Murray Campbell
CoGe
NAI
12
12
0
16 Jun 2020
Using Hindsight to Anchor Past Knowledge in Continual Learning
Arslan Chaudhry
Albert Gordo
P. Dokania
Philip H. S. Torr
David Lopez-Paz
KELM
CLL
14
233
0
19 Feb 2020
Measuring Compositional Generalization: A Comprehensive Method on Realistic Data
Daniel Keysers
Nathanael Scharli
Nathan Scales
Hylke Buisman
Daniel Furrer
...
Tibor Tihon
Dmitry Tsarkov
Xiao Wang
Marc van Zee
Olivier Bousquet
CoGe
21
347
0
20 Dec 2019
Routing Networks and the Challenges of Modular and Compositional Computation
Clemens Rosenbaum
Ignacio Cases
Matthew D Riemer
Tim Klinger
27
78
0
29 Apr 2019
Efficient Lifelong Learning with A-GEM
Arslan Chaudhry
MarcÁurelio Ranzato
Marcus Rohrbach
Mohamed Elhoseiny
CLL
40
1,421
0
02 Dec 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
299
11,681
0
09 Mar 2017
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
241
438
0
01 Dec 2016
1