ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.05421
  4. Cited By
Piecewise Deterministic Markov Processes and their invariant measures
v1v2v3 (latest)

Piecewise Deterministic Markov Processes and their invariant measures

14 July 2018
Alain Durmus
Arnaud Guillin
Pierre Monmarché
ArXiv (abs)PDFHTML

Papers citing "Piecewise Deterministic Markov Processes and their invariant measures"

19 / 19 papers shown
Title
Piecewise deterministic generative models
Piecewise deterministic generative models
Andrea Bertazzi
Alain Durmus
Dario Shariatian
Umut Simsekli
Éric Moulines
DiffM
65
1
0
28 Jul 2024
Non-reversible lifts of reversible diffusion processes and relaxation
  times
Non-reversible lifts of reversible diffusion processes and relaxation times
Andreas Eberle
Francis Lörler
68
9
0
07 Feb 2024
Debiasing Piecewise Deterministic Markov Process samplers using
  couplings
Debiasing Piecewise Deterministic Markov Process samplers using couplings
Adrien Corenflos
Matthew Sutton
Nicolas Chopin
56
1
0
27 Jun 2023
Scaling of Piecewise Deterministic Monte Carlo for Anisotropic Targets
Scaling of Piecewise Deterministic Monte Carlo for Anisotropic Targets
J. Bierkens
K. Kamatani
Gareth O. Roberts
65
1
0
01 May 2023
Randomized Time Riemannian Manifold Hamiltonian Monte Carlo
Randomized Time Riemannian Manifold Hamiltonian Monte Carlo
Peter Whalley
Daniel Paulin
Benedict Leimkuhler
63
4
0
09 Jun 2022
Nonlinear MCMC for Bayesian Machine Learning
Nonlinear MCMC for Bayesian Machine Learning
James Vuckovic
76
2
0
11 Feb 2022
PDMP Monte Carlo methods for piecewise-smooth densities
PDMP Monte Carlo methods for piecewise-smooth densities
Augustin Chevallier
Samuel Power
Andi Q. Wang
Paul Fearnhead
64
11
0
10 Nov 2021
Non-reversible processes: GENERIC, Hypocoercivity and fluctuations
Non-reversible processes: GENERIC, Hypocoercivity and fluctuations
M. H. Duong
M. Ottobre
43
7
0
30 Oct 2021
Speed Up Zig-Zag
Speed Up Zig-Zag
G. Vasdekis
Gareth O. Roberts
52
11
0
30 Mar 2021
Spatiotemporal blocking of the bouncy particle sampler for efficient
  inference in state space models
Spatiotemporal blocking of the bouncy particle sampler for efficient inference in state space models
Jacob Vorstrup Goldman
Sumeetpal S. Singh
61
4
0
08 Jan 2021
A general perspective on the Metropolis-Hastings kernel
A general perspective on the Metropolis-Hastings kernel
Christophe Andrieu
Anthony Lee
Samuel Livingstone
86
25
0
29 Dec 2020
Subgeometric hypocoercivity for piecewise-deterministic Markov process
  Monte Carlo methods
Subgeometric hypocoercivity for piecewise-deterministic Markov process Monte Carlo methods
Christophe Andrieu
P. Dobson
Andi Q. Wang
74
13
0
18 Nov 2020
Exact targeting of Gibbs distributions using velocity-jump processes
Exact targeting of Gibbs distributions using velocity-jump processes
Pierre Monmarché
Mathias Rousset
P. Zitt
18
6
0
21 Aug 2020
On explicit $L^2$-convergence rate estimate for piecewise deterministic
  Markov processes in MCMC algorithms
On explicit L2L^2L2-convergence rate estimate for piecewise deterministic Markov processes in MCMC algorithms
Jianfeng Lu
Lihan Wang
76
27
0
29 Jul 2020
Analysis of Stochastic Gradient Descent in Continuous Time
Analysis of Stochastic Gradient Descent in Continuous Time
J. Latz
81
41
0
15 Apr 2020
Cores for Piecewise-Deterministic Markov Processes used in Markov Chain
  Monte Carlo
Cores for Piecewise-Deterministic Markov Processes used in Markov Chain Monte Carlo
P. Holderrieth
93
10
0
20 Oct 2019
Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond
  the reversible scenario
Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond the reversible scenario
Christophe Andrieu
Samuel Livingstone
75
28
0
14 Jun 2019
Hypocoercivity of Piecewise Deterministic Markov Process-Monte Carlo
Hypocoercivity of Piecewise Deterministic Markov Process-Monte Carlo
Christophe Andrieu
Alain Durmus
Nikolas Nusken
Julien Roussel
51
50
0
26 Aug 2018
Randomized Hamiltonian Monte Carlo as Scaling Limit of the Bouncy
  Particle Sampler and Dimension-Free Convergence Rates
Randomized Hamiltonian Monte Carlo as Scaling Limit of the Bouncy Particle Sampler and Dimension-Free Convergence Rates
George Deligiannidis
Daniel Paulin
Alexandre Bouchard-Côté
Arnaud Doucet
95
52
0
13 Aug 2018
1