ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.08563
26
123

MVDepthNet: Real-time Multiview Depth Estimation Neural Network

23 July 2018
Kaixuan Wang
Shaojie Shen
    MDE
ArXivPDFHTML
Abstract

Although deep neural networks have been widely applied to computer vision problems, extending them into multiview depth estimation is non-trivial. In this paper, we present MVDepthNet, a convolutional network to solve the depth estimation problem given several image-pose pairs from a localized monocular camera in neighbor viewpoints. Multiview observations are encoded in a cost volume and then combined with the reference image to estimate the depth map using an encoder-decoder network. By encoding the information from multiview observations into the cost volume, our method achieves real-time performance and the flexibility of traditional methods that can be applied regardless of the camera intrinsic parameters and the number of images. Geometric data augmentation is used to train MVDepthNet. We further apply MVDepthNet in a monocular dense mapping system that continuously estimates depth maps using a single localized moving camera. Experiments show that our method can generate depth maps efficiently and precisely.

View on arXiv
Comments on this paper