Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1807.10707
Cited By
End-to-end Deep Learning from Raw Sensor Data: Atrial Fibrillation Detection using Wearables
27 July 2018
Igor Gotlibovych
Stuart Crawford
Dileep Goyal
Jiaqi Liu
Yaniv Kerem
D. Benaron
Defne Yilmaz
G. Marcus
Yihan Li
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"End-to-end Deep Learning from Raw Sensor Data: Atrial Fibrillation Detection using Wearables"
6 / 6 papers shown
Title
A systematic evaluation of uncertainty quantification techniques in deep learning: a case study in photoplethysmography signal analysis
Ciaran Bench
Oskar Pfeffer
Vivek Desai
Mohammad Moulaeifard
Loic Coquelin
Peter H. Charlton
Nils Strodthoff
Nando Hegemann
Philip Aston
Andrew Thompson
117
0
0
31 Oct 2025
Deep Learning Classification of Photoplethysmogram Signal for Hypertension Levels
N. Nasir
Mustafa Sameer
F. Barneih
O. Alshaltone
Muneeb Ahmed
226
3
0
23 May 2024
Estimating Blood Pressure from Photoplethysmogram Signal and Demographic Features using Machine Learning Techniques
M. H. Chowdhury
Md Nazmul Islam Shuzan
M. Chowdhury
Z. Mahbub
Mohammad Monir Uddin
Amith Khandakar
M. Reaz
140
200
0
07 May 2020
Teacher-Student Domain Adaptation for Biosensor Models
Lawrence Phillips
David B. Grimes
Yihan Li
OOD
81
3
0
17 Mar 2020
DeepBeat: A multi-task deep learning approach to assess signal quality and arrhythmia detection in wearable devices
J. Soto
Euan A. Ashley
115
8
0
01 Jan 2020
Deep Learning in Cardiology
Paschalis A. Bizopoulos
D. Koutsouris
MedIm
215
153
0
22 Feb 2019
1