ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.00100
  4. Cited By
WeedMap: A large-scale semantic weed mapping framework using aerial
  multispectral imaging and deep neural network for precision farming

WeedMap: A large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming

31 July 2018
Inkyu Sa
Marija Popović
R. Khanna
Zetao Chen
Philipp Lottes
F. Liebisch
Juan I. Nieto
C. Stachniss
Achim Walter
Roland Siegwart
ArXivPDFHTML

Papers citing "WeedMap: A large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming"

9 / 9 papers shown
Title
Multispectral Remote Sensing for Weed Detection in West Australian Agricultural Lands
Multispectral Remote Sensing for Weed Detection in West Australian Agricultural Lands
Haitian Wang
Muhammad Ibrahim
Yumeng Miao
D ustin Severtson
A. Mansoor
Ajmal Saeed Mian
47
0
0
12 Feb 2025
A Dataset and Benchmark for Shape Completion of Fruits for Agricultural Robotics
A Dataset and Benchmark for Shape Completion of Fruits for Agricultural Robotics
Federico Magistri
Thomas Labe
E. Marks
Sumanth Nagulavancha
Yue Pan
...
Michael Halstead
H. Kuhlmann
Chris McCool
Jens Behley
C. Stachniss
22
2
0
18 Jul 2024
Overcome the Fear Of Missing Out: Active Sensing UAV Scanning for
  Precision Agriculture
Overcome the Fear Of Missing Out: Active Sensing UAV Scanning for Precision Agriculture
Marios Krestenitis
Emmanuel K. Raptis
Athanasios Ch. Kapoutsis
Konstantinos Ioannidis
Elias B. Kosmatopoulos
S. Vrochidis
37
6
0
15 Dec 2023
PhenoBench -- A Large Dataset and Benchmarks for Semantic Image
  Interpretation in the Agricultural Domain
PhenoBench -- A Large Dataset and Benchmarks for Semantic Image Interpretation in the Agricultural Domain
J. Weyler
Federico Magistri
E. Marks
Yue Linn Chong
Matteo Sodano
Gianmarco Roggiolani
Nived Chebrolu
C. Stachniss
Jens Behley
30
30
0
07 Jun 2023
Transferring learned patterns from ground-based field imagery to predict
  UAV-based imagery for crop and weed semantic segmentation in precision crop
  farming
Transferring learned patterns from ground-based field imagery to predict UAV-based imagery for crop and weed semantic segmentation in precision crop farming
Junfeng Gao
Wenzhi Liao
D. Nuyttens
P. Lootens
Erik Alexandersson
J. Pieters
11
4
0
20 Oct 2022
Vision Transformers For Weeds and Crops Classification Of High
  Resolution UAV Images
Vision Transformers For Weeds and Crops Classification Of High Resolution UAV Images
Reenul Reedha
Eric Dericquebourg
R. Canals
A. Hafiane
ViT
22
114
0
06 Sep 2021
A Survey of Deep Learning Techniques for Weed Detection from Images
A Survey of Deep Learning Techniques for Weed Detection from Images
A. S. M. Mahmudul Hasan
Ferdous Sohel
D. Diepeveen
Hamid Laga
Michael G. K. Jones
23
304
0
02 Mar 2021
Weed Density and Distribution Estimation for Precision Agriculture using
  Semi-Supervised Learning
Weed Density and Distribution Estimation for Precision Agriculture using Semi-Supervised Learning
Shantam Shorewala
Armaan Ashfaque
R. Sidharth
Ujjwal Verma
16
66
0
04 Nov 2020
ENet: A Deep Neural Network Architecture for Real-Time Semantic
  Segmentation
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
Adam Paszke
Abhishek Chaurasia
Sangpil Kim
Eugenio Culurciello
SSeg
216
2,055
0
07 Jun 2016
1