Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.01153
Cited By
Ask, Acquire, and Attack: Data-free UAP Generation using Class Impressions
3 August 2018
Konda Reddy Mopuri
P. Uppala
R. Venkatesh Babu
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Ask, Acquire, and Attack: Data-free UAP Generation using Class Impressions"
32 / 32 papers shown
Title
Data-free Universal Adversarial Perturbation with Pseudo-semantic Prior
Chanhui Lee
Yeonghwan Song
Jeany Son
AAML
427
0
0
28 Feb 2025
Nearly Zero-Cost Protection Against Mimicry by Personalized Diffusion Models
Namhyuk Ahn
Kiyoon Yoo
Wonhyuk Ahn
Daesik Kim
Seung-Hun Nam
AAML
WIGM
DiffM
190
0
0
16 Dec 2024
One Perturbation is Enough: On Generating Universal Adversarial Perturbations against Vision-Language Pre-training Models
Hao Fang
Jiawei Kong
Wenbo Yu
Bin Chen
Jiawei Li
Hao Wu
Ke Xu
Ke Xu
AAML
VLM
131
13
0
08 Jun 2024
Beyond Boundaries: A Comprehensive Survey of Transferable Attacks on AI Systems
Guangjing Wang
Ce Zhou
Yuanda Wang
Bocheng Chen
Hanqing Guo
Qiben Yan
AAML
SILM
135
3
0
20 Nov 2023
Learning video embedding space with Natural Language Supervision
P. Uppala
Abhishek Bamotra
S. Priya
Vaidehi Joshi
CLIP
38
1
0
25 Mar 2023
FG-UAP: Feature-Gathering Universal Adversarial Perturbation
Zhixing Ye
Xinwen Cheng
Xiaolin Huang
AAML
108
11
0
27 Sep 2022
Robust Feature-Level Adversaries are Interpretability Tools
Stephen Casper
Max Nadeau
Dylan Hadfield-Menell
Gabriel Kreiman
AAML
178
28
0
07 Oct 2021
MINIMAL: Mining Models for Data Free Universal Adversarial Triggers
Swapnil Parekh
Yaman Kumar Singla
Somesh Singh
Changyou Chen
Balaji Krishnamurthy
R. Shah
AAML
49
3
0
25 Sep 2021
When and How to Fool Explainable Models (and Humans) with Adversarial Examples
Jon Vadillo
Roberto Santana
Jose A. Lozano
SILM
AAML
95
13
0
05 Jul 2021
Boosting Transferability of Targeted Adversarial Examples via Hierarchical Generative Networks
Xiao Yang
Yinpeng Dong
Tianyu Pang
Hang Su
Jun Zhu
AAML
79
39
0
05 Jul 2021
Dominant Patterns: Critical Features Hidden in Deep Neural Networks
Zhixing Ye
S. Qin
Sizhe Chen
Xiaolin Huang
AAML
57
2
0
31 May 2021
Performance Evaluation of Adversarial Attacks: Discrepancies and Solutions
Jing Wu
Mingyi Zhou
Ce Zhu
Yipeng Liu
Mehrtash Harandi
Li Li
AAML
107
11
0
22 Apr 2021
PrivateSNN: Privacy-Preserving Spiking Neural Networks
Youngeun Kim
Yeshwanth Venkatesha
Priyadarshini Panda
69
23
0
07 Apr 2021
Universal Adversarial Training with Class-Wise Perturbations
Philipp Benz
Chaoning Zhang
Adil Karjauv
In So Kweon
AAML
58
27
0
07 Apr 2021
On Generating Transferable Targeted Perturbations
Muzammal Naseer
Salman Khan
Munawar Hayat
Fahad Shahbaz Khan
Fatih Porikli
AAML
109
75
0
26 Mar 2021
A Survey On Universal Adversarial Attack
Chaoning Zhang
Philipp Benz
Chenguo Lin
Adil Karjauv
Jing Wu
In So Kweon
AAML
78
93
0
02 Mar 2021
Effective Universal Unrestricted Adversarial Attacks using a MOE Approach
Alina Elena Baia
G. D. Bari
V. Poggioni
AAML
72
8
0
27 Feb 2021
Mining Data Impressions from Deep Models as Substitute for the Unavailable Training Data
Gaurav Kumar Nayak
Konda Reddy Mopuri
Saksham Jain
Anirban Chakraborty
68
14
0
15 Jan 2021
On Success and Simplicity: A Second Look at Transferable Targeted Attacks
Zhengyu Zhao
Zhuoran Liu
Martha Larson
AAML
167
126
0
21 Dec 2020
Towards Imperceptible Universal Attacks on Texture Recognition
Yingpeng Deng
Lina Karam
AAML
36
1
0
24 Nov 2020
Adversarial Threats to DeepFake Detection: A Practical Perspective
Paarth Neekhara
Brian Dolhansky
Joanna Bitton
Cristian Canton Ferrer
AAML
61
85
0
19 Nov 2020
Transferable Universal Adversarial Perturbations Using Generative Models
Atiyeh Hashemi
Andreas Bär
S. Mozaffari
Tim Fingscheidt
AAML
78
17
0
28 Oct 2020
CD-UAP: Class Discriminative Universal Adversarial Perturbation
Chaoning Zhang
Philipp Benz
Tooba Imtiaz
In So Kweon
AAML
63
61
0
07 Oct 2020
Saliency-driven Class Impressions for Feature Visualization of Deep Neural Networks
Sravanti Addepalli
Dipesh Tamboli
R. Venkatesh Babu
Biplab Banerjee
FAtt
31
3
0
31 Jul 2020
Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations
Chaoning Zhang
Philipp Benz
Tooba Imtiaz
In-So Kweon
SSL
AAML
83
119
0
13 Jul 2020
Universal Adversarial Perturbations: A Survey
Ashutosh Chaubey
Nikhil Agrawal
Kavya Barnwal
K. K. Guliani
Pramod Mehta
OOD
AAML
104
47
0
16 May 2020
Adversarial Fooling Beyond "Flipping the Label"
Konda Reddy Mopuri
Vaisakh Shaj
R. Venkatesh Babu
AAML
64
12
0
27 Apr 2020
DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a Trained Classifier
Sravanti Addepalli
Gaurav Kumar Nayak
Anirban Chakraborty
R. Venkatesh Babu
77
37
0
27 Dec 2019
Cross-Domain Transferability of Adversarial Perturbations
Muzammal Naseer
Salman H. Khan
M. H. Khan
Fahad Shahbaz Khan
Fatih Porikli
AAML
115
145
0
28 May 2019
Zero-Shot Knowledge Distillation in Deep Networks
Gaurav Kumar Nayak
Konda Reddy Mopuri
Vaisakh Shaj
R. Venkatesh Babu
Anirban Chakraborty
75
245
0
20 May 2019
Universal Adversarial Training
A. Mendrik
Mahyar Najibi
Zheng Xu
John P. Dickerson
L. Davis
Tom Goldstein
AAML
OOD
102
190
0
27 Nov 2018
Generalizable Data-free Objective for Crafting Universal Adversarial Perturbations
Konda Reddy Mopuri
Aditya Ganeshan
R. Venkatesh Babu
AAML
134
206
0
24 Jan 2018
1