ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.03215
  4. Cited By
Scalable Gaussian Process Computations Using Hierarchical Matrices
v1v2 (latest)

Scalable Gaussian Process Computations Using Hierarchical Matrices

9 August 2018
Christopher J. Geoga
M. Anitescu
Michael L. Stein
ArXiv (abs)PDFHTML

Papers citing "Scalable Gaussian Process Computations Using Hierarchical Matrices"

8 / 8 papers shown
Title
Iterative Methods for Full-Scale Gaussian Process Approximations for Large Spatial Data
Iterative Methods for Full-Scale Gaussian Process Approximations for Large Spatial Data
Tim Gyger
Reinhard Furrer
Fabio Sigrist
65
2
0
23 May 2024
Generative Modeling via Hierarchical Tensor Sketching
Generative Modeling via Hierarchical Tensor Sketching
Yifan Peng
Yian Chen
E. Stoudenmire
Y. Khoo
61
15
0
11 Apr 2023
Scalable Physics-based Maximum Likelihood Estimation using Hierarchical
  Matrices
Scalable Physics-based Maximum Likelihood Estimation using Hierarchical Matrices
Yian Chen
M. Anitescu
31
8
0
17 Mar 2023
Non-stationary Gaussian process discriminant analysis with variable
  selection for high-dimensional functional data
Non-stationary Gaussian process discriminant analysis with variable selection for high-dimensional functional data
Weichang Yu
S. Wade
H. Bondell
Lamiae Azizi
28
4
0
29 Sep 2021
Spatial Multivariate Trees for Big Data Bayesian Regression
Spatial Multivariate Trees for Big Data Bayesian Regression
M. Peruzzi
David B. Dunson
48
10
0
02 Dec 2020
Hierarchical sparse Cholesky decomposition with applications to
  high-dimensional spatio-temporal filtering
Hierarchical sparse Cholesky decomposition with applications to high-dimensional spatio-temporal filtering
M. Jurek
Matthias Katzfuss
53
20
0
30 Jun 2020
A Survey of Constrained Gaussian Process Regression: Approaches and
  Implementation Challenges
A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges
L. Swiler
Mamikon A. Gulian
A. Frankel
Cosmin Safta
J. Jakeman
GPAI4CE
110
106
0
16 Jun 2020
Kernel Methods for Bayesian Elliptic Inverse Problems on Manifolds
Kernel Methods for Bayesian Elliptic Inverse Problems on Manifolds
J. Harlim
D. Sanz-Alonso
Ruiyi Yang
77
19
0
23 Oct 2019
1