ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.04952
68
17
v1v2 (latest)

Convolutional Neural Networks on 3D Surfaces Using Parallel Frames

15 August 2018
Yuqi Yang
Shilin Liu
Yang Liu
Xin Tong
    3DPC3DV
ArXiv (abs)PDFHTML
Abstract

We extend Convolutional Neural Networks (CNNs) on flat and regular domains (e.g. 2D images) to curved surfaces embedded in 3D Euclidean space that are discretized as irregular meshes and widely used to represent geometric data in Computer Vision and Graphics. We define surface convolution on tangent spaces of a surface domain, where the convolution has two desirable properties: 1) the distortion of surface domain signals is locally minimal when being projected to the tangent space, and 2) the translation equi-variance property holds locally, by aligning tangent spaces with the canonical parallel transport that preserves metric. For computation, we rely on a parallel N-direction frame field on the surface that minimizes field variation and therefore is as compatible as possible to and approximates the parallel transport. On the tangent spaces equipped with parallel frames, the computation of surface convolution becomes standard routine. The frames have rotational symmetry which we disambiguate by constructing the covering space of surface induced by the parallel frames and grouping the feature maps into N sets accordingly; convolution is computed on the N branches of the cover space with respective feature maps while the kernel weights are shared. To handle irregular points of a discrete mesh while sharing kernel weights, we make the convolution semi-discrete, i.e. the convolution kernels are polynomial functions, and their convolution with discrete surface points becomes sampling and weighted summation. Pooling and unpooling operations are computed along a mesh hierarchy built through simplification. The presented surface CNNs allow effective deep learning on meshes. We show that for tasks of classification, segmentation and non-rigid registration, surface CNNs using only raw input signals achieve superior performances than previous models using sophisticated input features.

View on arXiv
Comments on this paper