ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.05498
175
24
v1v2 (latest)

Occlusion Resistant Object Rotation Regression from Point Cloud Segments

16 August 2018
Ge Gao
M. Lauri
Jianwei Zhang
Simone Frintrop
    3DPC
ArXiv (abs)PDFHTML
Abstract

Rotation estimation of known rigid objects is important for robotic applications such as dexterous manipulation. Most existing methods for rotation estimation use intermediate representations such as templates, global or local feature descriptors, or object coordinates, which require multiple steps in order to infer the object pose. We propose to directly regress a pose vector from raw point cloud segments using a convolutional neural network. Experimental results show that our method can potentially achieve competitive performance compared to a state-of-the-art method, while also showing more robustness against occlusion. Our method does not require any post processing such as refinement with the iterative closest point algorithm.

View on arXiv
Comments on this paper