ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.08271
  4. Cited By
An elementary introduction to information geometry
v1v2 (latest)

An elementary introduction to information geometry

17 August 2018
Frank Nielsen
    3DGS
ArXiv (abs)PDFHTML

Papers citing "An elementary introduction to information geometry"

50 / 72 papers shown
Title
Foundations of Top-$k$ Decoding For Language Models
Foundations of Top-kkk Decoding For Language Models
Georgy Noarov
Soham Mallick
Tao Wang
Sunay Joshi
Yan Sun
Yangxinyu Xie
Mengxin Yu
Edgar Dobriban
36
0
0
25 May 2025
Spacetime Geometry of Denoising in Diffusion Models
Spacetime Geometry of Denoising in Diffusion Models
Rafał Karczewski
Markus Heinonen
Alison Pouplin
Søren Hauberg
Vikas Garg
DiffM
63
0
0
23 May 2025
Does Low Rank Adaptation Lead to Lower Robustness against Training-Time Attacks?
Does Low Rank Adaptation Lead to Lower Robustness against Training-Time Attacks?
Zi Liang
Haibo Hu
Qingqing Ye
Yaxin Xiao
Ronghua Li
AAML
97
1
0
19 May 2025
Variational Formulation of the Particle Flow Particle Filter
Variational Formulation of the Particle Flow Particle Filter
Yinzhuang Yi
Jorge Cortés
Nikolay Atanasov
71
0
0
06 May 2025
SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges
SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges
Ce Ju
Reinmar J. Kobler
Antoine Collas
M. Kawanabe
Cuntai Guan
Bertrand Thirion
104
0
0
26 Apr 2025
Squared families: Searching beyond regular probability models
Squared families: Searching beyond regular probability models
Russell Tsuchida
Jiawei Liu
Cheng Soon Ong
Dino Sejdinovic
68
0
0
27 Mar 2025
All Roads Lead to Likelihood: The Value of Reinforcement Learning in Fine-Tuning
Gokul Swamy
Sanjiban Choudhury
Wen Sun
Zhiwei Steven Wu
J. Andrew Bagnell
OffRL
142
20
0
03 Mar 2025
Learning to Assist Humans without Inferring Rewards
Learning to Assist Humans without Inferring Rewards
Vivek Myers
Evan Ellis
Sergey Levine
Benjamin Eysenbach
Anca Dragan
138
5
0
17 Jan 2025
Wasserstein Flow Matching: Generative modeling over families of distributions
Wasserstein Flow Matching: Generative modeling over families of distributions
Doron Haviv
Aram-Alexandre Pooladian
Dana Peér
Brandon Amos
OOD
112
1
0
01 Nov 2024
New divergence measures between persistence diagrams and stability of
  vectorizations
New divergence measures between persistence diagrams and stability of vectorizations
A. Bravetti
Martin Mijangos
P. Padilla
21
0
0
04 Oct 2024
Cartan moving frames and the data manifolds
Cartan moving frames and the data manifolds
Eliot Tron
Rita Fioresi
Nicolas Couellan
Stéphane Puechmorel
79
1
0
18 Sep 2024
Symplectic Bregman divergences
Symplectic Bregman divergences
Frank Nielsen
24
0
0
23 Aug 2024
Bayesian RG Flow in Neural Network Field Theories
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
135
2
0
27 May 2024
Fisher Flow Matching for Generative Modeling over Discrete Data
Fisher Flow Matching for Generative Modeling over Discrete Data
Oscar Davis
Samuel Kessler
Mircea Petrache
.Ismail .Ilkan Ceylan
Michael M. Bronstein
A. Bose
111
21
0
23 May 2024
Sequential transport maps using SoS density estimation and
  $α$-divergences
Sequential transport maps using SoS density estimation and ααα-divergences
Benjamin Zanger
Tiangang Cui
Martin Schreiber
O. Zahm
70
1
0
27 Feb 2024
NCoder -- A Quantum Field Theory approach to encoding data
NCoder -- A Quantum Field Theory approach to encoding data
David S. Berman
Marc S. Klinger
A. G. Stapleton
AI4CE
81
2
0
01 Feb 2024
Divergences induced by dual subtractive and divisive normalizations of
  exponential families and their convex deformations
Divergences induced by dual subtractive and divisive normalizations of exponential families and their convex deformations
Frank Nielsen
61
2
0
20 Dec 2023
Information geometry and $α$-parallel prior of the beta-logistic
  distribution
Information geometry and ααα-parallel prior of the beta-logistic distribution
Lin Jiu
Linyu Peng
53
0
0
17 Dec 2023
Improved Regret Bounds of (Multinomial) Logistic Bandits via
  Regret-to-Confidence-Set Conversion
Improved Regret Bounds of (Multinomial) Logistic Bandits via Regret-to-Confidence-Set Conversion
Junghyun Lee
Se-Young Yun
Kwang-Sung Jun
118
13
0
28 Oct 2023
Information Geometry for the Working Information Theorist
Information Geometry for the Working Information Theorist
Kumar Vijay
Ashok Kumar
Ieee Ting-Kam Leonard Member
AI4CE
79
1
0
05 Oct 2023
Language Model Decoding as Direct Metrics Optimization
Language Model Decoding as Direct Metrics Optimization
Haozhe Ji
Pei Ke
Hongning Wang
Minlie Huang
61
7
0
02 Oct 2023
The Fisher-Rao geometry of CES distributions
The Fisher-Rao geometry of CES distributions
Florent Bouchard
A. Breloy
Antoine Collas
Alexandre Renaux
G. Ginolhac
86
6
0
02 Oct 2023
Spherical and Hyperbolic Toric Topology-Based Codes On Graph Embedding
  for Ising MRF Models: Classical and Quantum Topology Machine Learning
Spherical and Hyperbolic Toric Topology-Based Codes On Graph Embedding for Ising MRF Models: Classical and Quantum Topology Machine Learning
V. Usatyuk
Sergey Egorov
Denis Sapozhnikov
71
3
0
28 Jul 2023
Geometry in global coordinates in mechanics and optimal transport
Geometry in global coordinates in mechanics and optimal transport
Du Nguyen
OT
17
0
0
19 Jul 2023
Asymptotically Optimal Pure Exploration for Infinite-Armed Bandits
Asymptotically Optimal Pure Exploration for Infinite-Armed Bandits
Evelyn Xiao-Yue Gong
Mark Sellke
94
1
0
03 Jun 2023
The Fisher Geometry and Geodesics of the Multivariate Normals, without
  Differential Geometry
The Fisher Geometry and Geodesics of the Multivariate Normals, without Differential Geometry
Brodie A. J. Lawson
K. Burrage
Kerrie Mengersen
R. D. Santos
29
0
0
02 Jun 2023
Neural FIM for learning Fisher Information Metrics from point cloud data
Neural FIM for learning Fisher Information Metrics from point cloud data
O. Fasina
Guilluame Huguet
Alexander Tong
Yanlei Zhang
Guy Wolf
Maximilian Nickel
Ian M. Adelstein
Smita Krishnaswamy
79
3
0
01 Jun 2023
Bayesian Renormalization
Bayesian Renormalization
D. Berman
Marc S. Klinger
A. G. Stapleton
92
17
0
17 May 2023
On Closed-Form Expressions for the Fisher-Rao Distance
On Closed-Form Expressions for the Fisher-Rao Distance
Henrique K. Miyamoto
Fábio C. C. Meneghetti
Julianna Pinele
Sueli I. R. Costa
101
15
0
28 Apr 2023
Playing it safe: information constrains collective betting strategies
Playing it safe: information constrains collective betting strategies
P. Fleig
V. Balasubramanian
55
0
0
18 Apr 2023
Codivergences and information matrices
Codivergences and information matrices
A. Derumigny
Johannes Schmidt-Hieber
96
1
0
14 Mar 2023
Towards Optimal Compression: Joint Pruning and Quantization
Towards Optimal Compression: Joint Pruning and Quantization
Ben Zandonati
Glenn Bucagu
Adrian Alan Pol
M. Pierini
Olya Sirkin
Tal Kopetz
MQ
81
3
0
15 Feb 2023
Phase2vec: Dynamical systems embedding with a physics-informed
  convolutional network
Phase2vec: Dynamical systems embedding with a physics-informed convolutional network
Matthew Ricci
Noa Moriel
Zoe Piran
Mor Nitzan
AI4CE
101
5
0
07 Dec 2022
Properties of the Concrete distribution
Properties of the Concrete distribution
D. D. Chow
64
0
0
02 Nov 2022
Loss Minimization through the Lens of Outcome Indistinguishability
Loss Minimization through the Lens of Outcome Indistinguishability
Parikshit Gopalan
Lunjia Hu
Michael P. Kim
Omer Reingold
Udi Wieder
UQCV
92
39
0
16 Oct 2022
FIT: A Metric for Model Sensitivity
FIT: A Metric for Model Sensitivity
Ben Zandonati
Adrian Alan Pol
M. Pierini
Olya Sirkin
Tal Kopetz
MQ
81
8
0
16 Oct 2022
Variational Representations of Annealing Paths: Bregman Information
  under Monotonic Embedding
Variational Representations of Annealing Paths: Bregman Information under Monotonic Embedding
Rob Brekelmans
Frank Nielsen
51
1
0
15 Sep 2022
Turning the information-sharing dial: efficient inference from different
  data sources
Turning the information-sharing dial: efficient inference from different data sources
Emily C. Hector
Ryan Martin
61
6
0
18 Jul 2022
Unsupervised Learning Discriminative MIG Detectors in Nonhomogeneous
  Clutter
Unsupervised Learning Discriminative MIG Detectors in Nonhomogeneous Clutter
Xiaoqiang Hua
Yusuke Ono
Linyu Peng
Yuting Xu
17
27
0
24 Apr 2022
On the Kullback-Leibler divergence between pairwise isotropic
  Gaussian-Markov random fields
On the Kullback-Leibler divergence between pairwise isotropic Gaussian-Markov random fields
A. Levada
11
2
0
24 Mar 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
97
25
0
20 Mar 2022
A Class of Geometric Structures in Transfer Learning: Minimax Bounds and
  Optimality
A Class of Geometric Structures in Transfer Learning: Minimax Bounds and Optimality
Xuhui Zhang
Jose H. Blanchet
Soumyadip Ghosh
M. Squillante
65
9
0
23 Feb 2022
On a prior based on the Wasserstein information matrix
On a prior based on the Wasserstein information matrix
W. Li
F. Rubio
47
3
0
07 Feb 2022
Designing Universal Causal Deep Learning Models: The Geometric
  (Hyper)Transformer
Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer
Beatrice Acciaio
Anastasis Kratsios
G. Pammer
OOD
133
23
0
31 Jan 2022
Merging Models with Fisher-Weighted Averaging
Merging Models with Fisher-Weighted Averaging
Michael Matena
Colin Raffel
FedMLMoMe
107
403
0
18 Nov 2021
Geodesic curves in Gaussian random field manifolds
Geodesic curves in Gaussian random field manifolds
A. Levada
19
0
0
06 Nov 2021
On the Importance of Firth Bias Reduction in Few-Shot Classification
On the Importance of Firth Bias Reduction in Few-Shot Classification
Saba Ghaffari
Ehsan Saleh
David A. Forsyth
Yu-Xiong Wang
95
13
0
06 Oct 2021
Principal component analysis for Gaussian process posteriors
Principal component analysis for Gaussian process posteriors
Hideaki Ishibashi
S. Akaho
123
6
0
15 Jul 2021
Fast approximations of the Jeffreys divergence between univariate
  Gaussian mixture models via exponential polynomial densities
Fast approximations of the Jeffreys divergence between univariate Gaussian mixture models via exponential polynomial densities
Frank Nielsen
101
12
0
13 Jul 2021
On the Variance of the Fisher Information for Deep Learning
On the Variance of the Fisher Information for Deep Learning
Alexander Soen
Ke Sun
FedMLFAtt
71
18
0
09 Jul 2021
12
Next