ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.08592
  4. Cited By
Hypocoercivity of Piecewise Deterministic Markov Process-Monte Carlo
v1v2v3 (latest)

Hypocoercivity of Piecewise Deterministic Markov Process-Monte Carlo

26 August 2018
Christophe Andrieu
Alain Durmus
Nikolas Nusken
Julien Roussel
ArXiv (abs)PDFHTML

Papers citing "Hypocoercivity of Piecewise Deterministic Markov Process-Monte Carlo"

20 / 20 papers shown
Title
Scaling of Piecewise Deterministic Monte Carlo for Anisotropic Targets
Scaling of Piecewise Deterministic Monte Carlo for Anisotropic Targets
J. Bierkens
K. Kamatani
Gareth O. Roberts
65
1
0
01 May 2023
Sampling algorithms in statistical physics: a guide for statistics and
  machine learning
Sampling algorithms in statistical physics: a guide for statistics and machine learning
Michael F Faulkner
Samuel Livingstone
62
7
0
09 Aug 2022
Stereographic Markov Chain Monte Carlo
Stereographic Markov Chain Monte Carlo
Jun Yang
K. Latuszyñski
Gareth O. Roberts
98
14
0
24 May 2022
Non-reversible processes: GENERIC, Hypocoercivity and fluctuations
Non-reversible processes: GENERIC, Hypocoercivity and fluctuations
M. H. Duong
M. Ottobre
43
7
0
30 Oct 2021
A Note on the Polynomial Ergodicity of the One-Dimensional Zig-Zag
  process
A Note on the Polynomial Ergodicity of the One-Dimensional Zig-Zag process
G. Vasdekis
Gareth O. Roberts
74
6
0
21 Jun 2021
Adaptive schemes for piecewise deterministic Monte Carlo algorithms
Adaptive schemes for piecewise deterministic Monte Carlo algorithms
Andrea Bertazzi
J. Bierkens
46
10
0
27 Dec 2020
Complexity of zigzag sampling algorithm for strongly log-concave
  distributions
Complexity of zigzag sampling algorithm for strongly log-concave distributions
Jianfeng Lu
Lihan Wang
70
6
0
21 Dec 2020
Subgeometric hypocoercivity for piecewise-deterministic Markov process
  Monte Carlo methods
Subgeometric hypocoercivity for piecewise-deterministic Markov process Monte Carlo methods
Christophe Andrieu
P. Dobson
Andi Q. Wang
74
13
0
18 Nov 2020
Exact targeting of Gibbs distributions using velocity-jump processes
Exact targeting of Gibbs distributions using velocity-jump processes
Pierre Monmarché
Mathias Rousset
P. Zitt
18
6
0
21 Aug 2020
On explicit $L^2$-convergence rate estimate for piecewise deterministic
  Markov processes in MCMC algorithms
On explicit L2L^2L2-convergence rate estimate for piecewise deterministic Markov processes in MCMC algorithms
Jianfeng Lu
Lihan Wang
76
27
0
29 Jul 2020
An invitation to sequential Monte Carlo samplers
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
136
68
0
23 Jul 2020
The Boomerang Sampler
The Boomerang Sampler
J. Bierkens
Sebastiano Grazzi
K. Kamatani
Gareth O. Roberts
57
32
0
24 Jun 2020
Posterior computation with the Gibbs zig-zag sampler
Posterior computation with the Gibbs zig-zag sampler
Matthias Sachs
Deborshee Sen
Jianfeng Lu
David B. Dunson
107
7
0
08 Apr 2020
NuZZ: numerical Zig-Zag sampling for general models
NuZZ: numerical Zig-Zag sampling for general models
Filippo Pagani
Augustin Chevallier
Samuel Power
T. House
S. Cotter
57
9
0
07 Mar 2020
A piecewise deterministic Monte Carlo method for diffusion bridges
A piecewise deterministic Monte Carlo method for diffusion bridges
J. Bierkens
Sebastiano Grazzi
Frank van der Meulen
Moritz Schauer
DiffM
83
22
0
16 Jan 2020
Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond
  the reversible scenario
Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond the reversible scenario
Christophe Andrieu
Samuel Livingstone
75
28
0
14 Jun 2019
Analysis of high-dimensional Continuous Time Markov Chains using the
  Local Bouncy Particle Sampler
Analysis of high-dimensional Continuous Time Markov Chains using the Local Bouncy Particle Sampler
T. Zhao
Alexandre Bouchard-Côté
136
5
0
30 May 2019
Efficient posterior sampling for high-dimensional imbalanced logistic
  regression
Efficient posterior sampling for high-dimensional imbalanced logistic regression
Deborshee Sen
Matthias Sachs
Jianfeng Lu
David B. Dunson
127
13
0
27 May 2019
Randomized Hamiltonian Monte Carlo as Scaling Limit of the Bouncy
  Particle Sampler and Dimension-Free Convergence Rates
Randomized Hamiltonian Monte Carlo as Scaling Limit of the Bouncy Particle Sampler and Dimension-Free Convergence Rates
George Deligiannidis
Daniel Paulin
Alexandre Bouchard-Côté
Arnaud Doucet
95
52
0
13 Aug 2018
A Discrete Bouncy Particle Sampler
A Discrete Bouncy Particle Sampler
Chris Sherlock
Alexandre Hoang Thiery
131
23
0
17 Jul 2017
1