ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.02235
  4. Cited By
A Bandit Approach to Multiple Testing with False Discovery Control
v1v2v3 (latest)

A Bandit Approach to Multiple Testing with False Discovery Control

6 September 2018
Kevin Jamieson
Lalit P. Jain
ArXiv (abs)PDFHTML

Papers citing "A Bandit Approach to Multiple Testing with False Discovery Control"

6 / 6 papers shown
Title
Comparing Sequential Forecasters
Comparing Sequential Forecasters
Yo Joong Choe
Aaditya Ramdas
AI4TS
132
12
0
30 Sep 2021
Challenges in Statistical Analysis of Data Collected by a Bandit
  Algorithm: An Empirical Exploration in Applications to Adaptively Randomized
  Experiments
Challenges in Statistical Analysis of Data Collected by a Bandit Algorithm: An Empirical Exploration in Applications to Adaptively Randomized Experiments
Joseph Jay Williams
Jacob Nogas
Nina Deliu
Hammad Shaikh
S. Villar
A. Durand
Anna N. Rafferty
AAML
66
10
0
22 Mar 2021
A New Perspective on Pool-Based Active Classification and
  False-Discovery Control
A New Perspective on Pool-Based Active Classification and False-Discovery Control
Lalit P. Jain
Kevin Jamieson
47
12
0
14 Aug 2020
The True Sample Complexity of Identifying Good Arms
The True Sample Complexity of Identifying Good Arms
Julian Katz-Samuels
Kevin Jamieson
157
42
0
15 Jun 2019
Asynchronous Online Testing of Multiple Hypotheses
Asynchronous Online Testing of Multiple Hypotheses
Tijana Zrnic
Aaditya Ramdas
Michael I. Jordan
102
31
0
12 Dec 2018
Time-uniform, nonparametric, nonasymptotic confidence sequences
Time-uniform, nonparametric, nonasymptotic confidence sequences
Steven R. Howard
Aaditya Ramdas
Jon D. McAuliffe
Jasjeet Sekhon
125
246
0
18 Oct 2018
1