ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.03057
  4. Cited By
Variance Reduction in Monte Carlo Counterfactual Regret Minimization
  (VR-MCCFR) for Extensive Form Games using Baselines

Variance Reduction in Monte Carlo Counterfactual Regret Minimization (VR-MCCFR) for Extensive Form Games using Baselines

9 September 2018
Martin Schmid
Neil Burch
Marc Lanctot
Matej Moravcík
Rudolf Kadlec
Michael H. Bowling
ArXivPDFHTML

Papers citing "Variance Reduction in Monte Carlo Counterfactual Regret Minimization (VR-MCCFR) for Extensive Form Games using Baselines"

5 / 5 papers shown
Title
A Survey on Self-play Methods in Reinforcement Learning
A Survey on Self-play Methods in Reinforcement Learning
Ruize Zhang
Zelai Xu
Chengdong Ma
Chao Yu
Weijuan Tu
...
Deheng Ye
Wenbo Ding
Yaodong Yang
Yu Wang
Yu Wang
SyDa
SSL
OnRL
46
8
0
02 Aug 2024
Near-Optimal Learning of Extensive-Form Games with Imperfect Information
Near-Optimal Learning of Extensive-Form Games with Imperfect Information
Yunru Bai
Chi Jin
Song Mei
Tiancheng Yu
21
26
0
03 Feb 2022
DREAM: Deep Regret minimization with Advantage baselines and Model-free
  learning
DREAM: Deep Regret minimization with Advantage baselines and Model-free learning
Eric Steinberger
Adam Lerer
Noam Brown
28
53
0
18 Jun 2020
Stochastic Regret Minimization in Extensive-Form Games
Stochastic Regret Minimization in Extensive-Form Games
Gabriele Farina
Christian Kroer
T. Sandholm
6
29
0
19 Feb 2020
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and
  Algorithms
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms
K. Zhang
Zhuoran Yang
Tamer Basar
36
1,178
0
24 Nov 2019
1