ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.03474
  4. Cited By
Universal Multi-Party Poisoning Attacks

Universal Multi-Party Poisoning Attacks

10 September 2018
Saeed Mahloujifar
Mohammad Mahmoody
Ameer Mohammed
    AAML
ArXivPDFHTML

Papers citing "Universal Multi-Party Poisoning Attacks"

9 / 9 papers shown
Title
Decoding FL Defenses: Systemization, Pitfalls, and Remedies
Decoding FL Defenses: Systemization, Pitfalls, and Remedies
M. A. Khan
Virat Shejwalkar
Yasra Chandio
Amir Houmansadr
Fatima M. Anwar
AAML
38
0
0
03 Feb 2025
Achieving Byzantine-Resilient Federated Learning via Layer-Adaptive
  Sparsified Model Aggregation
Achieving Byzantine-Resilient Federated Learning via Layer-Adaptive Sparsified Model Aggregation
Jiahao Xu
Zikai Zhang
Rui Hu
44
5
0
02 Sep 2024
Low-Loss Subspace Compression for Clean Gains against Multi-Agent
  Backdoor Attacks
Low-Loss Subspace Compression for Clean Gains against Multi-Agent Backdoor Attacks
Siddhartha Datta
N. Shadbolt
AAML
32
6
0
07 Mar 2022
Backdoors Stuck At The Frontdoor: Multi-Agent Backdoor Attacks That
  Backfire
Backdoors Stuck At The Frontdoor: Multi-Agent Backdoor Attacks That Backfire
Siddhartha Datta
N. Shadbolt
AAML
36
7
0
28 Jan 2022
Security for Machine Learning-based Software Systems: a survey of
  threats, practices and challenges
Security for Machine Learning-based Software Systems: a survey of threats, practices and challenges
Huaming Chen
Muhammad Ali Babar
AAML
37
21
0
12 Jan 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in
  Federated Learning from a Client Perspective
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective
Jingwei Sun
Ang Li
Louis DiValentin
Amin Hassanzadeh
Yiran Chen
H. Li
FedML
OOD
AAML
30
76
0
26 Oct 2021
Turning Federated Learning Systems Into Covert Channels
Turning Federated Learning Systems Into Covert Channels
Gabriele Costa
Fabio Pinelli
S. Soderi
Gabriele Tolomei
FedML
37
10
0
21 Apr 2021
A No-Free-Lunch Theorem for MultiTask Learning
A No-Free-Lunch Theorem for MultiTask Learning
Steve Hanneke
Samory Kpotufe
20
39
0
29 Jun 2020
Analyzing Federated Learning through an Adversarial Lens
Analyzing Federated Learning through an Adversarial Lens
A. Bhagoji
Supriyo Chakraborty
Prateek Mittal
S. Calo
FedML
191
1,032
0
29 Nov 2018
1