Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1809.04120
Cited By
v1
v2
v3 (latest)
Humans can decipher adversarial images
11 September 2018
Zhenglong Zhou
C. Firestone
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Humans can decipher adversarial images"
45 / 45 papers shown
Title
Targeted perturbations reveal brain-like local coding axes in robustified, but not standard, ANN-based brain models
Nikolas McNeal
N. Apurva Ratan Murty
AAML
88
0
0
27 Sep 2025
Limited but consistent gains in adversarial robustness by co-training object recognition models with human EEG
Manshan Guo
Bhavin Choksi
Sari Saba-Sadiya
A. T. Gifford
Martina G. Vilas
Radoslaw Martin Cichy
Gemma Roig
AAML
155
1
0
05 Sep 2024
Statistical Challenges with Dataset Construction: Why You Will Never Have Enough Images
Josh Goldman
John K. Tsotsos
131
2
0
20 Aug 2024
PartImageNet++ Dataset: Scaling up Part-based Models for Robust Recognition
Xiao-Li Li
Yining Liu
Na Dong
Sitian Qin
Xiaolin Hu
251
7
0
15 Jul 2024
Improving deep learning with prior knowledge and cognitive models: A survey on enhancing explainability, adversarial robustness and zero-shot learning
Cognitive Systems Research (Cogn. Syst. Res.), 2023
F. Mumuni
A. Mumuni
AAML
262
16
0
11 Mar 2024
Comparing supervised learning dynamics: Deep neural networks match human data efficiency but show a generalisation lag
Lukas Huber
Fred W. Mast
Felix A. Wichmann
245
1
0
14 Feb 2024
Neither hype nor gloom do DNNs justice
Behavioral and Brain Sciences (BBS), 2022
Gaurav Malhotra
Christian Tsvetkov
B. D. Evans
295
157
0
08 Dec 2023
Intrinsic Biologically Plausible Adversarial Robustness
Matilde Tristany Farinha
Thomas Ortner
Giorgia Dellaferrera
Benjamin Grewe
A. Pantazi
AAML
375
0
0
29 Sep 2023
Spatial-frequency channels, shape bias, and adversarial robustness
Neural Information Processing Systems (NeurIPS), 2023
Ajay Subramanian
E. Sizikova
N. Majaj
D. Pelli
AAML
148
26
0
22 Sep 2023
Robustified ANNs Reveal Wormholes Between Human Category Percepts
Guy Gaziv
Michael J. Lee
J. DiCarlo
AAML
121
9
0
14 Aug 2023
Adversarial alignment: Breaking the trade-off between the strength of an attack and its relevance to human perception
Drew Linsley
Pinyuan Feng
Thibaut Boissin
A. Ashok
Thomas Fel
Stephanie Olaiya
Thomas Serre
AAML
201
9
0
05 Jun 2023
Are Deep Neural Networks Adequate Behavioural Models of Human Visual Perception?
Annual Review of Vision Science (ARVS), 2023
Felix Wichmann
Robert Geirhos
208
37
0
26 May 2023
Noise robust neural network architecture
Yunuo Xiong
Hongwei Xiong
120
1
0
16 May 2023
The Representational Status of Deep Learning Models
Eamon Duede
264
3
0
21 Mar 2023
Language-Driven Anchors for Zero-Shot Adversarial Robustness
Computer Vision and Pattern Recognition (CVPR), 2023
Xiao-Li Li
Wei Emma Zhang
Yining Liu
Zhan Hu
Bo Zhang
Xiaolin Hu
224
19
0
30 Jan 2023
Recognizing Object by Components with Human Prior Knowledge Enhances Adversarial Robustness of Deep Neural Networks
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022
Xiao-Li Li
Ziqi Wang
Bo Zhang
Gang Hua
Xiaolin Hu
189
32
0
04 Dec 2022
Extreme Image Transformations Affect Humans and Machines Differently
Biological cybernetics (Biol Cybern), 2022
Girik Malik
Dakarai Crowder
E. Mingolla
AAML
230
3
0
30 Nov 2022
Is current research on adversarial robustness addressing the right problem?
Ali Borji
OOD
AAML
119
1
0
31 Jul 2022
Adversarially trained neural representations may already be as robust as corresponding biological neural representations
Chong Guo
Michael J. Lee
Guillaume Leclerc
Joel Dapello
Yug Rao
Aleksander Madry
J. DiCarlo
GAN
AAML
93
16
0
19 Jun 2022
Robustness of Humans and Machines on Object Recognition with Extreme Image Transformations
Dakarai Crowder
Girik Malik
OOD
AAML
171
4
0
09 May 2022
Designing Perceptual Puzzles by Differentiating Probabilistic Programs
International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), 2022
Kartik Chandra
Tzu-Mao Li
J. Tenenbaum
Jonathan Ragan-Kelley
AAML
97
23
0
26 Apr 2022
Image classifiers can not be made robust to small perturbations
Zheng Dai
David K Gifford
VLM
AAML
159
1
0
07 Dec 2021
Human Imperceptible Attacks and Applications to Improve Fairness
Xinru Hua
Huanzhong Xu
Jose H. Blanchet
V. Nguyen
AAML
159
4
0
30 Nov 2021
Why Out-of-distribution Detection in CNNs Does Not Like Mahalanobis -- and What to Use Instead
Kamil Szyc
T. Walkowiak
H. Maciejewski
OODD
84
0
0
13 Oct 2021
The Effects of Image Distribution and Task on Adversarial Robustness
Owen Kunhardt
Arturo Deza
T. Poggio
130
3
0
21 Feb 2021
Evaluating adversarial robustness in simulated cerebellum
Liu Yuezhang
Bo Li
Qifeng Chen
AAML
213
2
0
05 Dec 2020
Human vs. supervised machine learning: Who learns patterns faster?
Cognitive Systems Research (Cogn. Syst. Res.), 2020
Niklas Kühl
Marc Goutier
Lucas Baier
C. Wolff
Dominik Martin
257
49
0
30 Nov 2020
Fooling the primate brain with minimal, targeted image manipulation
Li-xin Yuan
Will Xiao
Giorgia Dellaferrera
Gabriel Kreiman
Francis E. H. Tay
Jiashi Feng
Margaret Livingstone
AAML
272
1
0
11 Nov 2020
Quantifying Learnability and Describability of Visual Concepts Emerging in Representation Learning
Neural Information Processing Systems (NeurIPS), 2020
Iro Laina
Ruth C. Fong
Andrea Vedaldi
OCL
146
13
0
27 Oct 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Proceedings of the IEEE (Proc. IEEE), 2020
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
328
50
0
19 Oct 2020
Relationship between manifold smoothness and adversarial vulnerability in deep learning with local errors
Zijian Jiang
Jianwen Zhou
Haiping Huang
AAML
108
9
0
04 Jul 2020
GNNGuard: Defending Graph Neural Networks against Adversarial Attacks
Xiang Zhang
Marinka Zitnik
AAML
358
346
0
15 Jun 2020
Five Points to Check when Comparing Visual Perception in Humans and Machines
Christina M. Funke
Judy Borowski
Karolina Stosio
Wieland Brendel
Thomas S. A. Wallis
Matthias Bethge
148
34
0
20 Apr 2020
Can you hear me
now
\textit{now}
now
? Sensitive comparisons of human and machine perception
Cognitive Sciences (CogSci), 2020
Michael A. Lepori
C. Firestone
AAML
188
10
0
27 Mar 2020
Adversarial Examples and the Deeper Riddle of Induction: The Need for a Theory of Artifacts in Deep Learning
Cameron Buckner
AAML
46
3
0
20 Mar 2020
A Hierarchy of Limitations in Machine Learning
M. Malik
159
66
0
12 Feb 2020
Controversial stimuli: pitting neural networks against each other as models of human recognition
Tal Golan
Prashant C. Raju
N. Kriegeskorte
AAML
199
39
0
21 Nov 2019
The Origins and Prevalence of Texture Bias in Convolutional Neural Networks
Katherine L. Hermann
Ting Chen
Simon Kornblith
CVBM
301
21
0
20 Nov 2019
Universal Physical Camouflage Attacks on Object Detectors
Computer Vision and Pattern Recognition (CVPR), 2019
Lifeng Huang
Chengying Gao
Yuyin Zhou
Cihang Xie
Alan Yuille
C. Zou
Ning Liu
AAML
247
197
0
10 Sep 2019
Playing magic tricks to deep neural networks untangles human deception
Regina Zaghi-Lara
Miguel A. Gea
J. Camí
Luis M. Martínez
A. Gomez-Marin
93
7
0
20 Aug 2019
Human detection of machine manipulated media
Communications of the ACM (CACM), 2019
Matthew Groh
Ziv Epstein
Nick Obradovich
Manuel Cebrian
Iyad Rahwan
127
22
0
06 Jul 2019
Improving the robustness of ImageNet classifiers using elements of human visual cognition
International Conference on Learning Representations (ICLR), 2019
A. Orhan
Brenden M. Lake
VLM
131
5
0
20 Jun 2019
A Surprising Density of Illusionable Natural Speech
Annual Meeting of the Cognitive Science Society (CogSci), 2019
M. Guan
Gregory Valiant
AAML
146
3
0
03 Jun 2019
Rearchitecting Classification Frameworks For Increased Robustness
Varun Chandrasekaran
Brian Tang
Nicolas Papernot
Kassem Fawaz
S. Jha
Xi Wu
AAML
OOD
247
8
0
26 May 2019
Deep Nets: What have they ever done for Vision?
Alan Yuille
Chenxi Liu
412
106
0
10 May 2018
1