11
0

Deformable Stacked Structure for Named Entity Recognition

Shuyang Cao
Xipeng Qiu
Xuanjing Huang
Abstract

Neural architecture for named entity recognition has achieved great success in the field of natural language processing. Currently, the dominating architecture consists of a bi-directional recurrent neural network (RNN) as the encoder and a conditional random field (CRF) as the decoder. In this paper, we propose a deformable stacked structure for named entity recognition, in which the connections between two adjacent layers are dynamically established. We evaluate the deformable stacked structure by adapting it to different layers. Our model achieves the state-of-the-art performances on the OntoNotes dataset.

View on arXiv
Comments on this paper