Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.00393
Cited By
Deep, Skinny Neural Networks are not Universal Approximators
30 September 2018
Jesse Johnson
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep, Skinny Neural Networks are not Universal Approximators"
14 / 14 papers shown
Title
Explicit neural network classifiers for non-separable data
Patrícia Muñoz Ewald
24
0
0
25 Apr 2025
Approximation properties of neural ODEs
Arturo De Marinis
Davide Murari
E. Celledoni
Nicola Guglielmi
B. Owren
Francesco Tudisco
52
1
0
19 Mar 2025
Minimum width for universal approximation using ReLU networks on compact domain
Namjun Kim
Chanho Min
Sejun Park
VLM
29
10
0
19 Sep 2023
Development of Non-Linear Equations for Predicting Electrical Conductivity in Silicates
P. D. Anjos
L. A. Quaresma
M. Machado
18
0
0
22 May 2023
LU decomposition and Toeplitz decomposition of a neural network
Yucong Liu
Simiao Jiao
Lek-Heng Lim
30
7
0
25 Nov 2022
Minimal Width for Universal Property of Deep RNN
Changhoon Song
Geonho Hwang
Jun ho Lee
Myung-joo Kang
25
9
0
25 Nov 2022
A Model-Constrained Tangent Slope Learning Approach for Dynamical Systems
Hai V. Nguyen
T. Bui-Thanh
39
2
0
09 Aug 2022
Qualitative neural network approximation over R and C: Elementary proofs for analytic and polynomial activation
Josiah Park
Stephan Wojtowytsch
26
1
0
25 Mar 2022
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
36
79
0
17 Sep 2020
Minimum Width for Universal Approximation
Sejun Park
Chulhee Yun
Jaeho Lee
Jinwoo Shin
33
122
0
16 Jun 2020
Understanding the Decision Boundary of Deep Neural Networks: An Empirical Study
David Mickisch
F. Assion
Florens Greßner
W. Günther
M. Motta
AAML
19
34
0
05 Feb 2020
Stochastic Feedforward Neural Networks: Universal Approximation
Thomas Merkh
Guido Montúfar
17
8
0
22 Oct 2019
Universal Approximation with Deep Narrow Networks
Patrick Kidger
Terry Lyons
40
328
0
21 May 2019
Benefits of depth in neural networks
Matus Telgarsky
153
603
0
14 Feb 2016
1