Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
1810.04327
Cited By
v1
v2
v3
v4 (latest)
Complementary-Label Learning for Arbitrary Losses and Models
10 October 2018
Takashi Ishida
Gang Niu
A. Menon
Masashi Sugiyama
VLM
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Complementary-Label Learning for Arbitrary Losses and Models"
50 / 61 papers shown
Title
Learning from Uncertain Similarity and Unlabeled Data
Meng Wei
Zhongnian Li
Peng Ying
Xinzheng Xu
8
0
0
15 Sep 2025
A Unified Empirical Risk Minimization Framework for Flexible N-Tuples Weak Supervision
Shuying Huang
Junpeng Li
Changchun Hua
Yana Yang
46
0
0
10 Jul 2025
Realistic Evaluation of Deep Partial-Label Learning Algorithms
Wei Wang
Dong-Dong Wu
Jindong Wang
Gang Niu
Min Zhang
Masashi Sugiyama
105
3
0
17 Feb 2025
Partial-Label Learning with a Reject Option
Tobias Fuchs
Florian Kalinke
Klemens Bohm
186
1
0
08 Jan 2025
Learning from Concealed Labels
Zhongnian Li
Meng Wei
Peng Ying
Tongfeng Sun
Xinzheng Xu
170
1
0
03 Dec 2024
An Unbiased Risk Estimator for Partial Label Learning with Augmented Classes
Jiayu Hu
Senlin Shu
Beibei Li
Tao Xiang
Zhongshi He
65
0
0
29 Sep 2024
Learning from Complementary Features
Kosuke Sugiyama
Masato Uchida
192
0
0
27 Aug 2024
Learning from True-False Labels via Multi-modal Prompt Retrieving
Zhongnian Li
Jinghao Xu
Peng Ying
Meng Wei
Tongfeng Sun
124
0
0
24 May 2024
Rethinking Loss Functions for Fact Verification
Yuta Mukobara
Yutaro Shigeto
Masashi Shimbo
AAML
94
0
0
13 Mar 2024
A General Framework for Learning from Weak Supervision
Hao Chen
Yongfeng Zhang
Lei Feng
Xiang Li
Yidong Wang
Xing Xie
Masashi Sugiyama
Rita Singh
Bhiksha Raj
133
6
0
02 Feb 2024
Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation
Zhuohang Dang
Minnan Luo
Chengyou Jia
Guangwen Dai
Xiao Chang
Jingdong Wang
96
10
0
27 Dec 2023
Appeal: Allow Mislabeled Samples the Chance to be Rectified in Partial Label Learning
Chongjie Si
Xuehui Wang
Yan Wang
Yunbo Wang
Wei Shen
127
1
0
18 Dec 2023
Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical
Wei Wang
Takashi Ishida
Yu Zhang
Gang Niu
Masashi Sugiyama
149
6
0
27 Nov 2023
Unified Risk Analysis for Weakly Supervised Learning
Chao-Kai Chiang
Masashi Sugiyama
113
4
0
15 Sep 2023
Weakly Supervised Regression with Interval Targets
Xi Cheng
Yuzhou Cao
Ximing Li
Bo An
Lei Feng
55
6
0
18 Jun 2023
Partial-Label Regression
Xin Cheng
Deng-Bao Wang
Lei Feng
Min-Ling Zhang
Bo An
62
2
0
15 Jun 2023
Enhancing Label Sharing Efficiency in Complementary-Label Learning with Label Augmentation
Weiliang Lin
Gang Niu
Hsuan-Tien Lin
Masashi Sugiyama
68
0
0
15 May 2023
CLImage: Human-Annotated Datasets for Complementary-Label Learning
Hsiu-Hsuan Wang
Tan-Ha Mai
Nai-Xuan Ye
Weiliang Lin
Hsuan-Tien Lin
147
4
0
15 May 2023
Q&A Label Learning
Kota Kawamoto
Masato Uchida
64
0
0
08 May 2023
Complementary to Multiple Labels: A Correlation-Aware Correction Approach
Yi Gao
Miao Xu
Min-Ling Zhang
68
1
0
25 Feb 2023
Leveraging weak complementary labels to improve semantic segmentation of hepatocellular carcinoma and cholangiocarcinoma in H&E-stained slides
Miriam Hagele
Johannes Eschrich
Lukas Ruff
Maximilian Alber
S. Schallenberg
A. Guillot
C. Roderburg
F. Tacke
Frederick Klauschen
59
0
0
03 Feb 2023
Learning from Stochastic Labels
Menglong Wei
Zhongnian Li
Yong Zhou
Qiaoyu Guo
Xinzheng Xu
78
0
0
01 Feb 2023
Rethinking Precision of Pseudo Label: Test-Time Adaptation via Complementary Learning
Jiayi Han
Longbin Zeng
Liang Du
Weiyang Ding
Jianfeng Feng
OOD
TTA
109
21
0
15 Jan 2023
Boosting Semi-Supervised Learning with Contrastive Complementary Labeling
Qinyi Deng
Yong Guo
Zhibang Yang
Haolin Pan
Jian Chen
159
11
0
13 Dec 2022
Complementary Labels Learning with Augmented Classes
Zhongnian Li
Jian Zhang
Mengting Xu
Xinzheng Xu
Daoqiang Zhang
70
1
0
19 Nov 2022
Adversarial Training with Complementary Labels: On the Benefit of Gradually Informative Attacks
Jianan Zhou
Jianing Zhu
Jingfeng Zhang
Tongliang Liu
Gang Niu
Bo Han
Masashi Sugiyama
AAML
76
9
0
01 Nov 2022
Class-Imbalanced Complementary-Label Learning via Weighted Loss
Meng Wei
Yong Zhou
Zhongnian Li
Xinzheng Xu
114
14
0
28 Sep 2022
Reduction from Complementary-Label Learning to Probability Estimates
Weipeng Lin
Hsuan-Tien Lin
123
10
0
20 Sep 2022
Meta Objective Guided Disambiguation for Partial Label Learning
B. Zou
Ming-Kun Xie
Sheng-Jun Huang
96
0
0
26 Aug 2022
ProPaLL: Probabilistic Partial Label Learning
Lukasz Struski
Jacek Tabor
Bartosz Zieliñski
93
2
0
21 Aug 2022
RDA: Reciprocal Distribution Alignment for Robust Semi-supervised Learning
Yue Duan
Lei Qi
Lei Wang
Luping Zhou
Yinghuan Shi
OOD
84
12
0
09 Aug 2022
Weakly-Supervised Temporal Action Localization by Progressive Complementary Learning
Jiachen Du
Jialuo Feng
Kun-Yu Lin
Fa-Ting Hong
Xiao-Ming Wu
Chen Ma
Ying Shan
Weihao Zheng
123
6
0
22 Jun 2022
Progressive Purification for Instance-Dependent Partial Label Learning
Ning Xu
Biao Liu
Jiaqi Lv
Congyu Qiao
Xin Geng
129
19
0
02 Jun 2022
Decompositional Generation Process for Instance-Dependent Partial Label Learning
Congyu Qiao
Ning Xu
Xin Geng
272
86
0
08 Apr 2022
Invariance Learning based on Label Hierarchy
S. Toyota
Kenji Fukumizu
OOD
75
1
0
29 Mar 2022
MutexMatch: Semi-Supervised Learning with Mutex-Based Consistency Regularization
Yue Duan
Zhen Zhao
Lei Qi
Lei Wang
Luping Zhou
Yinghuan Shi
Yang Gao
107
40
0
27 Mar 2022
Learning with Proper Partial Labels
Zheng Wu
Jiaqi Lv
Masashi Sugiyama
134
10
0
23 Dec 2021
Multi-Class Classification from Single-Class Data with Confidences
Yuzhou Cao
Lei Feng
Senlin Shu
Yitian Xu
Bo An
Gang Niu
Masashi Sugiyama
66
3
0
16 Jun 2021
On the Robustness of Average Losses for Partial-Label Learning
Jiaqi Lv
Biao Liu
Lei Feng
Ning Xu
Miao Xu
Bo An
Gang Niu
Xin Geng
Masashi Sugiyama
130
35
0
11 Jun 2021
Leveraged Weighted Loss for Partial Label Learning
Hongwei Wen
Jingyi Cui
H. Hang
Jiabin Liu
Yisen Wang
Zhouchen Lin
99
105
0
10 Jun 2021
To Smooth or Not? When Label Smoothing Meets Noisy Labels
Jiaheng Wei
Hangyu Liu
Tongliang Liu
Gang Niu
Masashi Sugiyama
Yang Liu
NoLa
244
83
0
08 Jun 2021
An Exploration into why Output Regularization Mitigates Label Noise
N. Shoham
Tomer Avidor
Nadav Tal-Israel
NoLa
43
0
0
26 Apr 2021
Lower-Bounded Proper Losses for Weakly Supervised Classification
Shuhei M. Yoshida
Takashi Takenouchi
Masashi Sugiyama
82
2
0
04 Mar 2021
Learning from Similarity-Confidence Data
Yuzhou Cao
Lei Feng
Yitian Xu
Bo An
Gang Niu
Masashi Sugiyama
79
23
0
13 Feb 2021
Binary Classification from Multiple Unlabeled Datasets via Surrogate Set Classification
Nan Lu
Shida Lei
Gang Niu
Issei Sato
Masashi Sugiyama
111
16
0
01 Feb 2021
A Survey of Label-noise Representation Learning: Past, Present and Future
Bo Han
Quanming Yao
Tongliang Liu
Gang Niu
Ivor W. Tsang
James T. Kwok
Masashi Sugiyama
NoLa
161
167
0
09 Nov 2020
Pointwise Binary Classification with Pairwise Confidence Comparisons
Lei Feng
Senlin Shu
Nan Lu
Bo Han
Miao Xu
Gang Niu
Bo An
Masashi Sugiyama
167
27
0
05 Oct 2020
Learning from a Complementary-label Source Domain: Theory and Algorithms
Yiyang Zhang
Feng Liu
Zhen Fang
Bo Yuan
Guangquan Zhang
Jie Lu
120
71
0
04 Aug 2020
Clarinet: A One-step Approach Towards Budget-friendly Unsupervised Domain Adaptation
Yiyang Zhang
Feng Liu
Zhen Fang
Bo Yuan
Guangquan Zhang
Jie Lu
116
31
0
29 Jul 2020
Provably Consistent Partial-Label Learning
Lei Feng
Jiaqi Lv
Bo Han
Miao Xu
Gang Niu
Xin Geng
Bo An
Masashi Sugiyama
91
154
0
17 Jul 2020
1
2
Next