Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.07378
Cited By
Progressive Weight Pruning of Deep Neural Networks using ADMM
17 October 2018
Shaokai Ye
Tianyun Zhang
Kaiqi Zhang
Jiayu Li
Kaidi Xu
Yunfei Yang
Fuxun Yu
Jian Tang
M. Fardad
Sijia Liu
Xiang Chen
X. Lin
Yanzhi Wang
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Progressive Weight Pruning of Deep Neural Networks using ADMM"
21 / 21 papers shown
Title
Non-transferable Pruning
Ruyi Ding
Lili Su
A. A. Ding
Yunsi Fei
AAML
24
2
0
10 Oct 2024
ALPS: Improved Optimization for Highly Sparse One-Shot Pruning for Large Language Models
Xiang Meng
Kayhan Behdin
Haoyue Wang
Rahul Mazumder
37
3
0
12 Jun 2024
Achieving Constraints in Neural Networks: A Stochastic Augmented Lagrangian Approach
Diogo Mateus Lavado
Cláudia Soares
Alessandra Micheletti
13
1
0
25 Oct 2023
PIM-QAT: Neural Network Quantization for Processing-In-Memory (PIM) Systems
Qing Jin
Zhiyu Chen
J. Ren
Yanyu Li
Yanzhi Wang
Kai-Min Yang
MQ
11
2
0
18 Sep 2022
Compressing Pre-trained Transformers via Low-Bit NxM Sparsity for Natural Language Understanding
Connor Holmes
Minjia Zhang
Yuxiong He
Bo Wu
9
3
0
30 Jun 2022
NxMTransformer: Semi-Structured Sparsification for Natural Language Understanding via ADMM
Connor Holmes
Minjia Zhang
Yuxiong He
Bo Wu
29
18
0
28 Oct 2021
Efficient Visual Recognition with Deep Neural Networks: A Survey on Recent Advances and New Directions
Yang Wu
Dingheng Wang
Xiaotong Lu
Fan Yang
Guoqi Li
W. Dong
Jianbo Shi
27
18
0
30 Aug 2021
DANCE: DAta-Network Co-optimization for Efficient Segmentation Model Training and Inference
Chaojian Li
Wuyang Chen
Yuchen Gu
Tianlong Chen
Yonggan Fu
Zhangyang Wang
Yingyan Lin
25
0
0
16 Jul 2021
DARTS-PRIME: Regularization and Scheduling Improve Constrained Optimization in Differentiable NAS
Kaitlin Maile
Erwan Lecarpentier
H. Luga
Dennis G. Wilson
17
1
0
22 Jun 2021
Learn-Prune-Share for Lifelong Learning
Zifeng Wang
T. Jian
Kaushik R. Chowdhury
Yanzhi Wang
Jennifer Dy
Stratis Ioannidis
KELM
CLL
23
35
0
13 Dec 2020
Alternating Direction Method of Multipliers for Quantization
Tianjian Huang
Prajwal Singhania
Maziar Sanjabi
Pabitra Mitra
Meisam Razaviyayn
MQ
17
10
0
08 Sep 2020
L-CO-Net: Learned Condensation-Optimization Network for Clinical Parameter Estimation from Cardiac Cine MRI
S. Hasan
Cristian A. Linte
17
0
0
21 Apr 2020
Comprehensive SNN Compression Using ADMM Optimization and Activity Regularization
Lei Deng
Yujie Wu
Yifan Hu
Ling Liang
Guoqi Li
Xing Hu
Yufei Ding
Peng Li
Yuan Xie
20
79
0
03 Nov 2019
AutoCompress: An Automatic DNN Structured Pruning Framework for Ultra-High Compression Rates
Ning Liu
Xiaolong Ma
Zhiyuan Xu
Yanzhi Wang
Jian Tang
Jieping Ye
27
183
0
06 Jul 2019
Plug-in, Trainable Gate for Streamlining Arbitrary Neural Networks
Jaedeok Kim
Chi-youn Park
Hyungsik Jung
Yoonsuck Choe
11
18
0
24 Apr 2019
Distributed Power Control for Large Energy Harvesting Networks: A Multi-Agent Deep Reinforcement Learning Approach
M. Sharma
Alessio Zappone
Mohamad Assaad
Merouane Debbah
S. Vassilaras
14
44
0
01 Apr 2019
Single-shot Channel Pruning Based on Alternating Direction Method of Multipliers
Chengcheng Li
Z. Wang
Xiangyang Wang
Hairong Qi
11
5
0
18 Feb 2019
CAE-ADMM: Implicit Bitrate Optimization via ADMM-based Pruning in Compressive Autoencoders
Haimeng Zhao
Peiyuan Liao
19
5
0
22 Jan 2019
A Unified Framework of DNN Weight Pruning and Weight Clustering/Quantization Using ADMM
David Cortes
Tianyun Zhang
Kaiqi Zhang
Jiayu Li
Jiaming Xie
Yun Liang
Sijia Liu
X. Lin
Yanzhi Wang
MQ
13
45
0
05 Nov 2018
Differentiable Fine-grained Quantization for Deep Neural Network Compression
Hsin-Pai Cheng
Yuanjun Huang
Xuyang Guo
Yifei Huang
Feng Yan
Hai Helen Li
Yiran Chen
MQ
15
13
0
20 Oct 2018
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
Aojun Zhou
Anbang Yao
Yiwen Guo
Lin Xu
Yurong Chen
MQ
311
1,047
0
10 Feb 2017
1