Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.09102
Cited By
Can We Gain More from Orthogonality Regularizations in Training Deep CNNs?
22 October 2018
Nitin Bansal
Xiaohan Chen
Zhangyang Wang
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Github (129★)
Papers citing
"Can We Gain More from Orthogonality Regularizations in Training Deep CNNs?"
7 / 107 papers shown
Title
Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group
Mario Lezcano Casado
David Martínez-Rubio
50
200
0
24 Jan 2019
Learning Compositional Representations for Few-Shot Recognition
P. Tokmakov
Yu-Xiong Wang
M. Hebert
OCL
74
126
0
21 Dec 2018
Information Geometry of Orthogonal Initializations and Training
Piotr A. Sokól
Il-Su Park
AI4CE
125
17
0
09 Oct 2018
Deep Asymmetric Networks with a Set of Node-wise Variant Activation Functions
Jinhyeok Jang
Hyunjoong Cho
Jaehong Kim
Jaeyeon Lee
Seungjoon Yang
20
2
0
11 Sep 2018
NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation
Anastasis Kratsios
Cody B. Hyndman
OOD
69
17
0
31 Aug 2018
Learning Simple Thresholded Features with Sparse Support Recovery
Hongyu Xu
Zhangyang Wang
Haichuan Yang
Ding Liu
Ji Liu
79
32
0
16 Apr 2018
Frank-Wolfe Network: An Interpretable Deep Structure for Non-Sparse Coding
Dong Liu
Ke Sun
Zhangyang Wang
Runsheng Liu
Zhengjun Zha
86
12
0
28 Feb 2018
Previous
1
2
3