ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.10340
  4. Cited By
Investigating Object Compositionality in Generative Adversarial Networks

Investigating Object Compositionality in Generative Adversarial Networks

17 October 2018
Sjoerd van Steenkiste
Karol Kurach
Jürgen Schmidhuber
Sylvain Gelly
    GAN
    OCL
ArXivPDFHTML

Papers citing "Investigating Object Compositionality in Generative Adversarial Networks"

5 / 5 papers shown
Title
Unsupervised Learning of Compositional Energy Concepts
Unsupervised Learning of Compositional Energy Concepts
Yilun Du
Shuang Li
Yash Sharma
J. Tenenbaum
Igor Mordatch
CoGe
OCL
13
76
0
04 Nov 2021
GENESIS-V2: Inferring Unordered Object Representations without Iterative
  Refinement
GENESIS-V2: Inferring Unordered Object Representations without Iterative Refinement
Martin Engelcke
Oiwi Parker Jones
Ingmar Posner
OCL
29
115
0
20 Apr 2021
Image Generation from Scene Graphs
Image Generation from Scene Graphs
Justin Johnson
Agrim Gupta
Li Fei-Fei
GNN
223
815
0
04 Apr 2018
Generating Images Part by Part with Composite Generative Adversarial
  Networks
Generating Images Part by Part with Composite Generative Adversarial Networks
Hanock Kwak
Byoung-Tak Zhang
GAN
68
40
0
19 Jul 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
230
2,545
0
25 Jan 2016
1