ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.11914
  4. Cited By
Rademacher Complexity for Adversarially Robust Generalization

Rademacher Complexity for Adversarially Robust Generalization

29 October 2018
Dong Yin
Kannan Ramchandran
Peter L. Bartlett
    AAML
ArXivPDFHTML

Papers citing "Rademacher Complexity for Adversarially Robust Generalization"

50 / 55 papers shown
Title
Wasserstein Distributionally Robust Nonparametric Regression
Wasserstein Distributionally Robust Nonparametric Regression
Changyu Liu
Yuling Jiao
Junhui Wang
Jian Huang
OOD
31
0
0
12 May 2025
Risk Analysis and Design Against Adversarial Actions
Risk Analysis and Design Against Adversarial Actions
M. Campi
A. Carè
Luis G. Crespo
S. Garatti
Federico A. Ramponi
AAML
127
0
0
02 May 2025
DONOD: Robust and Generalizable Instruction Fine-Tuning for LLMs via Model-Intrinsic Dataset Pruning
DONOD: Robust and Generalizable Instruction Fine-Tuning for LLMs via Model-Intrinsic Dataset Pruning
Jucheng Hu
S. M. I. Simon X. Yang
Dongzhan Zhou
Lijun Wu
34
0
0
21 Apr 2025
Adaptive Retrieval Without Self-Knowledge? Bringing Uncertainty Back Home
Adaptive Retrieval Without Self-Knowledge? Bringing Uncertainty Back Home
Viktor Moskvoretskii
M. Lysyuk
Mikhail Salnikov
Nikolay Ivanov
Sergey Pletenev
Daria Galimzianova
Nikita Krayko
Vasily Konovalov
Irina Nikishina
Alexander Panchenko
RALM
74
4
0
24 Feb 2025
Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
Dun Zeng
Zheshun Wu
Shiyu Liu
Yu Pan
Xiaoying Tang
Zenglin Xu
MLT
FedML
89
1
0
25 Nov 2024
Efficient Optimization Algorithms for Linear Adversarial Training
Efficient Optimization Algorithms for Linear Adversarial Training
Antônio H. Ribeiro
Thomas B. Schon
Dave Zahariah
Francis Bach
AAML
45
1
0
16 Oct 2024
Uniformly Stable Algorithms for Adversarial Training and Beyond
Uniformly Stable Algorithms for Adversarial Training and Beyond
Jiancong Xiao
Jiawei Zhang
Zhimin Luo
Asuman Ozdaglar
AAML
45
0
0
03 May 2024
Asymptotic Behavior of Adversarial Training Estimator under $\ell_\infty$-Perturbation
Asymptotic Behavior of Adversarial Training Estimator under ℓ∞\ell_\inftyℓ∞​-Perturbation
Yiling Xie
Xiaoming Huo
36
2
0
27 Jan 2024
Better Representations via Adversarial Training in Pre-Training: A
  Theoretical Perspective
Better Representations via Adversarial Training in Pre-Training: A Theoretical Perspective
Yue Xing
Xiaofeng Lin
Qifan Song
Yi Tian Xu
Belinda Zeng
Guang Cheng
SSL
23
0
0
26 Jan 2024
PAC-Bayesian Spectrally-Normalized Bounds for Adversarially Robust
  Generalization
PAC-Bayesian Spectrally-Normalized Bounds for Adversarially Robust Generalization
Jiancong Xiao
Ruoyu Sun
Zhimin Luo
AAML
32
6
0
09 Oct 2023
Demystifying Causal Features on Adversarial Examples and Causal
  Inoculation for Robust Network by Adversarial Instrumental Variable
  Regression
Demystifying Causal Features on Adversarial Examples and Causal Inoculation for Robust Network by Adversarial Instrumental Variable Regression
Junho Kim
Byung-Kwan Lee
Yonghyun Ro
CML
AAML
20
18
0
02 Mar 2023
AdvCat: Domain-Agnostic Robustness Assessment for Cybersecurity-Critical
  Applications with Categorical Inputs
AdvCat: Domain-Agnostic Robustness Assessment for Cybersecurity-Critical Applications with Categorical Inputs
Helene Orsini
Hongyan Bao
Yujun Zhou
Xiangrui Xu
Yufei Han
Longyang Yi
Wei Wang
Xin Gao
Xiangliang Zhang
AAML
21
1
0
13 Dec 2022
Leveraging Unlabeled Data to Track Memorization
Leveraging Unlabeled Data to Track Memorization
Mahsa Forouzesh
Hanie Sedghi
Patrick Thiran
NoLa
TDI
34
3
0
08 Dec 2022
When are Local Queries Useful for Robust Learning?
When are Local Queries Useful for Robust Learning?
Pascale Gourdeau
Varun Kanade
Marta Z. Kwiatkowska
J. Worrell
OOD
35
1
0
12 Oct 2022
Stability Analysis and Generalization Bounds of Adversarial Training
Stability Analysis and Generalization Bounds of Adversarial Training
Jiancong Xiao
Yanbo Fan
Ruoyu Sun
Jue Wang
Zhimin Luo
AAML
29
30
0
03 Oct 2022
Robust Empirical Risk Minimization with Tolerance
Robust Empirical Risk Minimization with Tolerance
Robi Bhattacharjee
Max Hopkins
Akash Kumar
Hantao Yu
Kamalika Chaudhuri
OOD
28
8
0
02 Oct 2022
Adaptive Smoothness-weighted Adversarial Training for Multiple
  Perturbations with Its Stability Analysis
Adaptive Smoothness-weighted Adversarial Training for Multiple Perturbations with Its Stability Analysis
Jiancong Xiao
Zeyu Qin
Yanbo Fan
Baoyuan Wu
Jue Wang
Zhimin Luo
AAML
31
7
0
02 Oct 2022
On the Role of Generalization in Transferability of Adversarial Examples
On the Role of Generalization in Transferability of Adversarial Examples
Yilin Wang
Farzan Farnia
AAML
24
10
0
18 Jun 2022
The Consistency of Adversarial Training for Binary Classification
Natalie Frank
Jonathan Niles-Weed
AAML
33
5
0
18 Jun 2022
Building Robust Ensembles via Margin Boosting
Building Robust Ensembles via Margin Boosting
Dinghuai Zhang
Hongyang R. Zhang
Aaron Courville
Yoshua Bengio
Pradeep Ravikumar
A. Suggala
AAML
UQCV
45
15
0
07 Jun 2022
On the (Non-)Robustness of Two-Layer Neural Networks in Different
  Learning Regimes
On the (Non-)Robustness of Two-Layer Neural Networks in Different Learning Regimes
Elvis Dohmatob
A. Bietti
AAML
27
13
0
22 Mar 2022
Robustly-reliable learners under poisoning attacks
Robustly-reliable learners under poisoning attacks
Maria-Florina Balcan
Avrim Blum
Steve Hanneke
Dravyansh Sharma
AAML
OOD
26
14
0
08 Mar 2022
Why adversarial training can hurt robust accuracy
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
13
18
0
03 Mar 2022
Adversarial robustness of sparse local Lipschitz predictors
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
32
13
0
26 Feb 2022
A Characterization of Semi-Supervised Adversarially-Robust PAC
  Learnability
A Characterization of Semi-Supervised Adversarially-Robust PAC Learnability
Idan Attias
Steve Hanneke
Yishay Mansour
30
15
0
11 Feb 2022
An Exploration of Multicalibration Uniform Convergence Bounds
An Exploration of Multicalibration Uniform Convergence Bounds
Harrison Rosenberg
Robi Bhattacharjee
Kassem Fawaz
S. Jha
14
1
0
09 Feb 2022
Benign Overfitting in Adversarially Robust Linear Classification
Benign Overfitting in Adversarially Robust Linear Classification
Jinghui Chen
Yuan Cao
Quanquan Gu
AAML
SILM
31
10
0
31 Dec 2021
On the Existence of the Adversarial Bayes Classifier (Extended Version)
On the Existence of the Adversarial Bayes Classifier (Extended Version)
Pranjal Awasthi
Natalie Frank
M. Mohri
26
24
0
03 Dec 2021
Transductive Robust Learning Guarantees
Transductive Robust Learning Guarantees
Omar Montasser
Steve Hanneke
Nathan Srebro
16
13
0
20 Oct 2021
Classification and Adversarial examples in an Overparameterized Linear
  Model: A Signal Processing Perspective
Classification and Adversarial examples in an Overparameterized Linear Model: A Signal Processing Perspective
Adhyyan Narang
Vidya Muthukumar
A. Sahai
SILM
AAML
36
1
0
27 Sep 2021
Virtual Data Augmentation: A Robust and General Framework for
  Fine-tuning Pre-trained Models
Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models
Kun Zhou
Wayne Xin Zhao
Sirui Wang
Fuzheng Zhang
Wei Yu Wu
Ji-Rong Wen
AAML
21
7
0
13 Sep 2021
Regional Adversarial Training for Better Robust Generalization
Regional Adversarial Training for Better Robust Generalization
Chuanbiao Song
Yanbo Fan
Yichen Yang
Baoyuan Wu
Yiming Li
Zhifeng Li
Kun He
AAML
OOD
13
6
0
02 Sep 2021
Attack Transferability Characterization for Adversarially Robust
  Multi-label Classification
Attack Transferability Characterization for Adversarially Robust Multi-label Classification
Zhuo Yang
Yufei Han
Xiangliang Zhang
AAML
23
4
0
29 Jun 2021
Improved OOD Generalization via Adversarial Training and Pre-training
Improved OOD Generalization via Adversarial Training and Pre-training
Mingyang Yi
Lu Hou
Jiacheng Sun
Lifeng Shang
Xin Jiang
Qun Liu
Zhi-Ming Ma
VLM
23
83
0
24 May 2021
How benign is benign overfitting?
How benign is benign overfitting?
Amartya Sanyal
P. Dokania
Varun Kanade
Philip H. S. Torr
NoLa
AAML
23
57
0
08 Jul 2020
A Le Cam Type Bound for Adversarial Learning and Applications
A Le Cam Type Bound for Adversarial Learning and Applications
Qiuling Xu
Kevin Bello
Jean Honorio
AAML
16
1
0
01 Jul 2020
Sharp Statistical Guarantees for Adversarially Robust Gaussian
  Classification
Sharp Statistical Guarantees for Adversarially Robust Gaussian Classification
Chen Dan
Yuting Wei
Pradeep Ravikumar
24
45
0
29 Jun 2020
Meta Transition Adaptation for Robust Deep Learning with Noisy Labels
Meta Transition Adaptation for Robust Deep Learning with Noisy Labels
Jun Shu
Qian Zhao
Zengben Xu
Deyu Meng
NoLa
31
29
0
10 Jun 2020
Adversarial Classification via Distributional Robustness with
  Wasserstein Ambiguity
Adversarial Classification via Distributional Robustness with Wasserstein Ambiguity
Nam Ho-Nguyen
Stephen J. Wright
OOD
40
16
0
28 May 2020
PatchGuard: A Provably Robust Defense against Adversarial Patches via
  Small Receptive Fields and Masking
PatchGuard: A Provably Robust Defense against Adversarial Patches via Small Receptive Fields and Masking
Chong Xiang
A. Bhagoji
Vikash Sehwag
Prateek Mittal
AAML
22
29
0
17 May 2020
Efficiently Learning Adversarially Robust Halfspaces with Noise
Efficiently Learning Adversarially Robust Halfspaces with Noise
Omar Montasser
Surbhi Goel
Ilias Diakonikolas
Nathan Srebro
29
32
0
15 May 2020
Adversarial Learning Guarantees for Linear Hypotheses and Neural
  Networks
Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks
Pranjal Awasthi
Natalie Frank
M. Mohri
AAML
28
56
0
28 Apr 2020
Overfitting in adversarially robust deep learning
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
30
785
0
26 Feb 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
22
396
0
26 Feb 2020
The Curious Case of Adversarially Robust Models: More Data Can Help,
  Double Descend, or Hurt Generalization
The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization
Yifei Min
Lin Chen
Amin Karbasi
AAML
31
69
0
25 Feb 2020
MaxUp: A Simple Way to Improve Generalization of Neural Network Training
MaxUp: A Simple Way to Improve Generalization of Neural Network Training
Chengyue Gong
Tongzheng Ren
Mao Ye
Qiang Liu
AAML
19
56
0
20 Feb 2020
CAT: Customized Adversarial Training for Improved Robustness
CAT: Customized Adversarial Training for Improved Robustness
Minhao Cheng
Qi Lei
Pin-Yu Chen
Inderjit Dhillon
Cho-Jui Hsieh
OOD
AAML
24
114
0
17 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust
  and Standard Models
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
27
64
0
11 Feb 2020
Improved Sample Complexities for Deep Networks and Robust Classification
  via an All-Layer Margin
Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin
Colin Wei
Tengyu Ma
AAML
OOD
36
85
0
09 Oct 2019
Adversarial Training Can Hurt Generalization
Adversarial Training Can Hurt Generalization
Aditi Raghunathan
Sang Michael Xie
Fanny Yang
John C. Duchi
Percy Liang
13
239
0
14 Jun 2019
12
Next