ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.13314
173
21
v1v2 (latest)

Crowdsourcing with Fairness, Diversity and Budget Constraints

31 October 2018
Naman Goel
Boi Faltings
    FaML
ArXiv (abs)PDFHTML
Abstract

Recent studies have shown that the labels collected from crowdworkers can be discriminatory with respect to sensitive attributes such as gender and race. This raises questions about the suitability of using crowdsourced data for further use, such as for training machine learning algorithms. In this work, we address the problem of fair and diverse data collection from a crowd under budget constraints. We propose a novel algorithm which maximizes the expected accuracy of the collected data, while ensuring that the errors satisfy desired notions of fairness. We provide guarantees on the performance of our algorithm and show that the algorithm performs well in practice through experiments on a real dataset.

View on arXiv
Comments on this paper