ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.00473
  4. Cited By
Unsupervised representation learning using convolutional and stacked
  auto-encoders: a domain and cross-domain feature space analysis

Unsupervised representation learning using convolutional and stacked auto-encoders: a domain and cross-domain feature space analysis

1 November 2018
G. B. Cavallari
Leo Sampaio Ferraz Ribeiro
M. Ponti
    SSLOODDRL
ArXiv (abs)PDFHTML

Papers citing "Unsupervised representation learning using convolutional and stacked auto-encoders: a domain and cross-domain feature space analysis"

6 / 6 papers shown
Title
G2L: A Geometric Approach for Generating Pseudo-labels that Improve
  Transfer Learning
G2L: A Geometric Approach for Generating Pseudo-labels that Improve Transfer Learning
J. Kender
Bishwaranjan Bhattacharjee
Parijat Dube
Brian M. Belgodere
36
0
0
07 Jul 2022
LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood
LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood
Piotr Tempczyk
Rafał Michaluk
Łukasz Garncarek
Przemysław Spurek
Jacek Tabor
Adam Goliñski
110
28
0
29 Jun 2022
Training Deep Networks from Zero to Hero: avoiding pitfalls and going
  beyond
Training Deep Networks from Zero to Hero: avoiding pitfalls and going beyond
M. Ponti
Fernando Pereira dos Santos
Leo Sampaio Ferraz Ribeiro
G. B. Cavallari
56
16
0
06 Sep 2021
Adversarial Examples can be Effective Data Augmentation for Unsupervised
  Machine Learning
Adversarial Examples can be Effective Data Augmentation for Unsupervised Machine Learning
Chia-Yi Hsu
Pin-Yu Chen
Songtao Lu
Sijia Liu
Chia-Mu Yu
AAML
80
11
0
02 Mar 2021
Intrusion Detection Systems for IoT: opportunities and challenges
  offered by Edge Computing and Machine Learning
Intrusion Detection Systems for IoT: opportunities and challenges offered by Edge Computing and Machine Learning
Pietro Spadaccino
F. Cuomo
26
19
0
02 Dec 2020
Generalization of feature embeddings transferred from different video
  anomaly detection domains
Generalization of feature embeddings transferred from different video anomaly detection domains
Fernando Pereira dos Santos
Leo Sampaio Ferraz Ribeiro
M. Ponti
31
41
0
28 Jan 2019
1