ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.00961
  4. Cited By
Discovering conservation laws from data for control

Discovering conservation laws from data for control

2 November 2018
E. Kaiser
J. Nathan Kutz
Steven L. Brunton
ArXiv (abs)PDFHTML

Papers citing "Discovering conservation laws from data for control"

15 / 15 papers shown
Title
Interpretable Machine Learning in Physics: A Review
Interpretable Machine Learning in Physics: A Review
Sebastian Johann Wetzel
Seungwoong Ha
Raban Iten
Miriam Klopotek
Ziming Liu
AI4CE
160
2
0
30 Mar 2025
Data-Driven Discovery of Conservation Laws from Trajectories via Neural
  Deflation
Data-Driven Discovery of Conservation Laws from Trajectories via Neural Deflation
Shaoxuan Chen
Panayotis G. Kevrekidis
Hong-Kun Zhang
Wei Zhu
PINN
54
1
0
07 Oct 2024
Learning Hamiltonian neural Koopman operator and simultaneously
  sustaining and discovering conservation law
Learning Hamiltonian neural Koopman operator and simultaneously sustaining and discovering conservation law
Jingdong Zhang
Qunxi Zhu
Wei Lin
63
8
0
04 Jun 2024
Discovering New Interpretable Conservation Laws as Sparse Invariants
Discovering New Interpretable Conservation Laws as Sparse Invariants
Ziming Liu
Patrick Obin Sturm
Saketh Bharadwaj
Sam Silva
M. Tegmark
39
5
0
31 May 2023
Benchmarking sparse system identification with low-dimensional chaos
Benchmarking sparse system identification with low-dimensional chaos
A. Kaptanoglu
Lanyue Zhang
Zachary G. Nicolaou
Urban Fasel
Steven L. Brunton
98
24
0
04 Feb 2023
Discovering Conservation Laws using Optimal Transport and Manifold
  Learning
Discovering Conservation Laws using Optimal Transport and Manifold Learning
Peter Y. Lu
Rumen Dangovski
M. Soljavcić
82
18
0
31 Aug 2022
Applying Machine Learning to Study Fluid Mechanics
Applying Machine Learning to Study Fluid Mechanics
Steven L. Brunton
PINNAI4CE
58
99
0
05 Oct 2021
Weak Form Generalized Hamiltonian Learning
Weak Form Generalized Hamiltonian Learning
Kevin Course
Trefor W. Evans
P. Nair
AI4CE
56
10
0
11 Apr 2021
Deep Learning of Conjugate Mappings
Deep Learning of Conjugate Mappings
J. Bramburger
S. Patterson
J. Nathan Kutz
75
15
0
01 Apr 2021
Discovering conservation laws from trajectories via machine learning
Discovering conservation laws from trajectories via machine learning
Seungwoong Ha
Hawoong Jeong
PINNAI4CE
60
10
0
08 Feb 2021
Data-driven model reduction of agent-based systems using the Koopman
  generator
Data-driven model reduction of agent-based systems using the Koopman generator
Jan-Hendrik Niemann
Stefan Klus
Christof Schütte
42
10
0
14 Dec 2020
Sparse Symplectically Integrated Neural Networks
Sparse Symplectically Integrated Neural Networks
Daniel M. DiPietro
S. Xiong
Bo Zhu
88
31
0
10 Jun 2020
Sparse Identification of Slow Timescale Dynamics
Sparse Identification of Slow Timescale Dynamics
J. Bramburger
D. Dylewsky
J. Nathan Kutz
43
18
0
01 Jun 2020
Data-driven approximation of the Koopman generator: Model reduction,
  system identification, and control
Data-driven approximation of the Koopman generator: Model reduction, system identification, and control
Stefan Klus
Feliks Nuske
Sebastian Peitz
Jan-Hendrik Niemann
C. Clementi
Christof Schütte
111
229
0
23 Sep 2019
Data-driven Modelling of Dynamical Systems Using Tree Adjoining Grammar
  and Genetic Programming
Data-driven Modelling of Dynamical Systems Using Tree Adjoining Grammar and Genetic Programming
Dhruv Khandelwal
Maarten Schoukens
R. Tóth
24
6
0
05 Apr 2019
1