Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.00961
Cited By
Discovering conservation laws from data for control
2 November 2018
E. Kaiser
J. Nathan Kutz
Steven L. Brunton
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Discovering conservation laws from data for control"
15 / 15 papers shown
Title
Interpretable Machine Learning in Physics: A Review
Sebastian Johann Wetzel
Seungwoong Ha
Raban Iten
Miriam Klopotek
Ziming Liu
AI4CE
160
2
0
30 Mar 2025
Data-Driven Discovery of Conservation Laws from Trajectories via Neural Deflation
Shaoxuan Chen
Panayotis G. Kevrekidis
Hong-Kun Zhang
Wei Zhu
PINN
54
1
0
07 Oct 2024
Learning Hamiltonian neural Koopman operator and simultaneously sustaining and discovering conservation law
Jingdong Zhang
Qunxi Zhu
Wei Lin
63
8
0
04 Jun 2024
Discovering New Interpretable Conservation Laws as Sparse Invariants
Ziming Liu
Patrick Obin Sturm
Saketh Bharadwaj
Sam Silva
M. Tegmark
39
5
0
31 May 2023
Benchmarking sparse system identification with low-dimensional chaos
A. Kaptanoglu
Lanyue Zhang
Zachary G. Nicolaou
Urban Fasel
Steven L. Brunton
98
24
0
04 Feb 2023
Discovering Conservation Laws using Optimal Transport and Manifold Learning
Peter Y. Lu
Rumen Dangovski
M. Soljavcić
82
18
0
31 Aug 2022
Applying Machine Learning to Study Fluid Mechanics
Steven L. Brunton
PINN
AI4CE
58
99
0
05 Oct 2021
Weak Form Generalized Hamiltonian Learning
Kevin Course
Trefor W. Evans
P. Nair
AI4CE
56
10
0
11 Apr 2021
Deep Learning of Conjugate Mappings
J. Bramburger
S. Patterson
J. Nathan Kutz
75
15
0
01 Apr 2021
Discovering conservation laws from trajectories via machine learning
Seungwoong Ha
Hawoong Jeong
PINN
AI4CE
60
10
0
08 Feb 2021
Data-driven model reduction of agent-based systems using the Koopman generator
Jan-Hendrik Niemann
Stefan Klus
Christof Schütte
42
10
0
14 Dec 2020
Sparse Symplectically Integrated Neural Networks
Daniel M. DiPietro
S. Xiong
Bo Zhu
88
31
0
10 Jun 2020
Sparse Identification of Slow Timescale Dynamics
J. Bramburger
D. Dylewsky
J. Nathan Kutz
43
18
0
01 Jun 2020
Data-driven approximation of the Koopman generator: Model reduction, system identification, and control
Stefan Klus
Feliks Nuske
Sebastian Peitz
Jan-Hendrik Niemann
C. Clementi
Christof Schütte
111
229
0
23 Sep 2019
Data-driven Modelling of Dynamical Systems Using Tree Adjoining Grammar and Genetic Programming
Dhruv Khandelwal
Maarten Schoukens
R. Tóth
24
6
0
05 Apr 2019
1