Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Home
Papers
1811.03179
Cited By
v1
v2
v3
v4 (latest)
How Well Generative Adversarial Networks Learn Distributions
Journal of machine learning research (JMLR), 2018
7 November 2018
Tengyuan Liang
GAN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"How Well Generative Adversarial Networks Learn Distributions"
50 / 57 papers shown
CINDES: Classification induced neural density estimator and simulator
Dehao Dai
Jianqing Fan
Yihong Gu
Debarghya Mukherjee
DiffM
CML
132
0
0
01 Oct 2025
Feature Space Topology Control via Hopkins Loss
Einari Vaaras
Manu Airaksinen
96
0
0
14 Sep 2025
Distribution estimation via Flow Matching with Lipschitz guarantees
Lea Kunkel
DiffM
125
2
0
02 Sep 2025
Generalized Dual Discriminator GANs
Penukonda Naga Chandana
Tejas Srivastava
Gowtham R. Kurri
V. Lalitha
GAN
168
0
0
23 Jul 2025
Half-AVAE: Adversarial-Enhanced Factorized and Structured Encoder-Free VAE for Underdetermined Independent Component Analysis
Yuan-Hao Wei
Yan-Jie Sun
204
1
0
08 Jun 2025
Towards provable probabilistic safety for scalable embodied AI systems
Linxuan He
Qing-Shan Jia
Ang Li
Hongyan Sang
Ling Wang
...
Yisen Wang
Peng Wei
Zhongyuan Wang
Henry X. Liu
Shuo Feng
266
0
0
05 Jun 2025
A Theoretical Perspective: How to Prevent Model Collapse in Self-consuming Training Loops
International Conference on Learning Representations (ICLR), 2025
Shi Fu
Yingjie Wang
Yuzhu Chen
Xinmei Tian
Dacheng Tao
371
8
0
26 Feb 2025
Adversarial Transform Particle Filters
Chengxin Gong
Wei Lin
Cheng Zhang
199
0
0
10 Feb 2025
Scalable Sobolev IPM for Probability Measures on a Graph
Tam Le
Truyen V. Nguyen
H. Hino
Kenji Fukumizu
379
2
0
02 Feb 2025
Nested Annealed Training Scheme for Generative Adversarial Networks
Chang Wan
Ming-Hsuan Yang
Minglu Li
Yunliang Jiang
Zhonglong Zheng
GAN
330
1
0
20 Jan 2025
DNA-SE: Towards Deep Neural-Nets Assisted Semiparametric Estimation
International Conference on Machine Learning (ICML), 2024
Qinshuo Liu
Zixin Wang
Xi-An Li
Xinyao Ji
Lei Zhang
Lin Liu
Zhonghua Liu
280
0
0
04 Aug 2024
Theoretical Insights into CycleGAN: Analyzing Approximation and Estimation Errors in Unpaired Data Generation
Luwei Sun
Dongrui Shen
Han Feng
415
4
0
16 Jul 2024
Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning
Annals of Statistics (Ann. Stat.), 2024
Yihong Gu
Cong Fang
Peter Bühlmann
Jianqing Fan
OOD
CML
714
4
0
07 May 2024
Minimax density estimation in the adversarial framework under local differential privacy
Mélisande Albert
Juliette Chevallier
Béatrice Laurent
Ousmane Sacko
189
0
0
27 Mar 2024
A Statistical Analysis of Wasserstein Autoencoders for Intrinsically Low-dimensional Data
Saptarshi Chakraborty
Peter L. Bartlett
181
3
0
24 Feb 2024
A Survey on Statistical Theory of Deep Learning: Approximation, Training Dynamics, and Generative Models
Annual Review of Statistics and Its Application (ARSIA), 2024
Namjoon Suh
Guang Cheng
MedIm
341
17
0
14 Jan 2024
Sample Complexity Bounds for Estimating Probability Divergences under Invariances
International Conference on Machine Learning (ICML), 2023
B. Tahmasebi
Stefanie Jegelka
286
9
0
06 Nov 2023
Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution
International Conference on Machine Learning (ICML), 2023
Elen Vardanyan
Sona Hunanyan
T. Galstyan
A. Minasyan
A. Dalalyan
330
2
0
31 Jul 2023
Complexity Matters: Rethinking the Latent Space for Generative Modeling
Neural Information Processing Systems (NeurIPS), 2023
Tianyang Hu
Fei Chen
Hong Wang
Jiawei Li
Wei Cao
Jiacheng Sun
Hao Sun
DiffM
320
17
0
17 Jul 2023
Insights into Closed-form IPM-GAN Discriminator Guidance for Diffusion Modeling
Aadithya Srikanth
Siddarth Asokan
Nishanth Shetty
C. Seelamantula
290
0
0
02 Jun 2023
Toward Understanding Generative Data Augmentation
Neural Information Processing Systems (NeurIPS), 2023
Chenyu Zheng
Guoqiang Wu
Chongxuan Li
206
40
0
27 May 2023
Statistical Guarantees of Group-Invariant GANs
Ziyu Chen
Markos A. Katsoulakis
Luc Rey-Bellet
Wei-wei Zhu
604
5
0
22 May 2023
Utility Theory of Synthetic Data Generation
Shi Xu
W. Sun
Guang Cheng
521
5
0
17 May 2023
Spider GAN: Leveraging Friendly Neighbors to Accelerate GAN Training
Computer Vision and Pattern Recognition (CVPR), 2023
Aadithya Srikanth
C. Seelamantula
GAN
417
3
0
12 May 2023
Minimax optimal density estimation using a shallow generative model with a one-dimensional latent variable
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Hyeok Kyu Kwon
Minwoo Chae
DRL
275
3
0
11 May 2023
LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral Image Generation with Variance Regularization
Emmanuel Martinez
Roman Jacome
Alejandra Hernandez-Rojas
Henry Arguello
166
7
0
29 Apr 2023
GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models
Neural Information Processing Systems (NeurIPS), 2023
Zaitang Li
Pin-Yu Chen
Tsung-Yi Ho
AAML
DiffM
202
6
0
19 Apr 2023
PAC-Bayesian Generalization Bounds for Adversarial Generative Models
International Conference on Machine Learning (ICML), 2023
S. Mbacke
Florence Clerc
Pascal Germain
400
10
0
17 Feb 2023
Constrained Policy Optimization with Explicit Behavior Density for Offline Reinforcement Learning
Neural Information Processing Systems (NeurIPS), 2023
Jing Zhang
Chi Zhang
Wenjia Wang
Bing-Yi Jing
OffRL
238
13
0
28 Jan 2023
Distribution Estimation of Contaminated Data via DNN-based MoM-GANs
Fang Xie
Lihu Xu
Qiuran Yao
Huiming Zhang
160
0
0
28 Dec 2022
Blessings and Curses of Covariate Shifts: Adversarial Learning Dynamics, Directional Convergence, and Equilibria
Journal of machine learning research (JMLR), 2022
Tengyuan Liang
412
3
0
05 Dec 2022
Distribution estimation and change-point estimation for time series via DNN-based GANs
Jianya Lu
Ying Mo
Zhijie Xiao
Lihu Xu
Qiuran Yao
AI4TS
173
0
0
26 Nov 2022
Asymptotic Statistical Analysis of
f
f
f
-divergence GAN
Xinwei Shen
Kani Chen
Tong Zhang
238
2
0
14 Sep 2022
α
α
α
-GAN: Convergence and Estimation Guarantees
International Symposium on Information Theory (ISIT), 2022
Gowtham R. Kurri
Monica Welfert
Tyler Sypherd
Lalitha Sankar
GAN
202
10
0
12 May 2022
A Manifold Two-Sample Test Study: Integral Probability Metric with Neural Networks
Information and Inference A Journal of the IMA (JIII), 2022
Jie Wang
Minshuo Chen
Tuo Zhao
Wenjing Liao
Yao Xie
202
8
0
04 May 2022
On the Nash equilibrium of moment-matching GANs for stationary Gaussian processes
Mathematical and Scientific Machine Learning (MSML), 2022
Sixin Zhang
GAN
304
2
0
14 Mar 2022
Online Learning to Transport via the Minimal Selection Principle
Annual Conference Computational Learning Theory (COLT), 2022
Wenxuan Guo
Y. Hur
Tengyuan Liang
Christopher Ryan
168
6
0
09 Feb 2022
Rates of convergence for nonparametric estimation of singular distributions using generative adversarial networks
Journal of the Korean Statistical Society (JKSS), 2022
Minwoo Chae
GAN
282
5
0
07 Feb 2022
Approximation bounds for norm constrained neural networks with applications to regression and GANs
Applied and Computational Harmonic Analysis (ACHA), 2022
Yuling Jiao
Yang Wang
Yunfei Yang
218
26
0
24 Jan 2022
Minimax Optimality (Probably) Doesn't Imply Distribution Learning for GANs
International Conference on Learning Representations (ICLR), 2022
Sitan Chen
Jungshian Li
Yuanzhi Li
Raghu Meka
GAN
211
6
0
18 Jan 2022
Optimal 1-Wasserstein Distance for WGANs
Bernoulli (Bernoulli), 2022
Arthur Stéphanovitch
Ugo Tanielian
B. Cadre
N. Klutchnikoff
Gérard Biau
OT
GAN
135
5
0
08 Jan 2022
Non-Asymptotic Error Bounds for Bidirectional GANs
Neural Information Processing Systems (NeurIPS), 2021
Shiao Liu
Yunfei Yang
Jian Huang
Yuling Jiao
Yang Wang
126
8
0
24 Oct 2021
Statistical Regeneration Guarantees of the Wasserstein Autoencoder with Latent Space Consistency
Neural Information Processing Systems (NeurIPS), 2021
A. Chakrabarty
Swagatam Das
DRL
171
7
0
08 Oct 2021
Reversible Gromov-Monge Sampler for Simulation-Based Inference
Y. Hur
Wenxuan Guo
Tengyuan Liang
231
13
0
28 Sep 2021
Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Journal of Computational Physics (JCP), 2021
Yihang Gao
Michael K. Ng
219
38
0
30 Aug 2021
Sharp Convergence Rates for Empirical Optimal Transport with Smooth Costs
Tudor Manole
Jonathan Niles-Weed
OT
364
45
0
24 Jun 2021
Realizing GANs via a Tunable Loss Function
Information Theory Workshop (ITW), 2021
Gowtham R. Kurri
Tyler Sypherd
Lalitha Sankar
GAN
190
18
0
09 Jun 2021
A likelihood approach to nonparametric estimation of a singular distribution using deep generative models
Journal of machine learning research (JMLR), 2021
Minwoo Chae
Dongha Kim
Yongdai Kim
Lizhen Lin
519
22
0
09 May 2021
Statistical inference for generative adversarial networks and other minimax problems
Scandinavian Journal of Statistics (Scand. J. Stat.), 2021
Mika Meitz
GAN
200
6
0
21 Apr 2021
Approximating Probability Distributions by using Wasserstein Generative Adversarial Networks
SIAM Journal on Mathematics of Data Science (SIMODS), 2021
Yihang Gao
Michael K. Ng
Mingjie Zhou
GAN
411
2
0
18 Mar 2021
1
2
Next