ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.03733
  4. Cited By
Universal Decision-Based Black-Box Perturbations: Breaking
  Security-Through-Obscurity Defenses

Universal Decision-Based Black-Box Perturbations: Breaking Security-Through-Obscurity Defenses

9 November 2018
T. A. Hogan
B. Kailkhura
    AAML
ArXivPDFHTML

Papers citing "Universal Decision-Based Black-Box Perturbations: Breaking Security-Through-Obscurity Defenses"

3 / 3 papers shown
Title
On the Design of Black-box Adversarial Examples by Leveraging
  Gradient-free Optimization and Operator Splitting Method
On the Design of Black-box Adversarial Examples by Leveraging Gradient-free Optimization and Operator Splitting Method
Pu Zhao
Sijia Liu
Pin-Yu Chen
Nghia Hoang
Kaidi Xu
B. Kailkhura
Xue Lin
AAML
27
54
0
26 Jul 2019
Generative Counterfactual Introspection for Explainable Deep Learning
Generative Counterfactual Introspection for Explainable Deep Learning
Shusen Liu
B. Kailkhura
Donald Loveland
Yong Han
20
90
0
06 Jul 2019
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,835
0
08 Jul 2016
1