Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.06128
Cited By
Machine Learning for Combinatorial Optimization: a Methodological Tour d'Horizon
15 November 2018
Yoshua Bengio
Andrea Lodi
Antoine Prouvost
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Machine Learning for Combinatorial Optimization: a Methodological Tour d'Horizon"
50 / 501 papers shown
Title
Towards Invertible Semantic-Preserving Embeddings of Logical Formulae
Gaia Saveri
Luca Bortolussi
NAI
46
3
0
03 May 2023
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
94
32
0
29 Apr 2023
H-TSP: Hierarchically Solving the Large-Scale Travelling Salesman Problem
Xuanhao Pan
Yan Jin
Yuandong Ding
Ming Feng
Li Zhao
Lei Song
Jiang Bian
11
35
0
19 Apr 2023
A Scalable Test Problem Generator for Sequential Transfer Optimization
Xiaoming Xue
Cuie Yang
Liang Feng
Kai Zhang
Linqi Song
Kay Chen Tan
17
11
0
17 Apr 2023
Quantifying and Explaining Machine Learning Uncertainty in Predictive Process Monitoring: An Operations Research Perspective
Nijat Mehdiyev
Maxim Majlatow
Peter Fettke
32
11
0
13 Apr 2023
Generating a Graph Colouring Heuristic with Deep Q-Learning and Graph Neural Networks
George Watkins
Giovanni Montana
Juergen Branke
GNN
24
4
0
08 Apr 2023
Combinatorial Optimization enriched Machine Learning to solve the Dynamic Vehicle Routing Problem with Time Windows
Léo Baty
Kai Jungel
P. Klein
Axel Parmentier
Maximilian Schiffer
11
28
0
03 Apr 2023
Graph Neural Networks for the Offline Nanosatellite Task Scheduling Problem
Bruno Machado Pacheco
L. O. Seman
C. A. Rigo
E. Camponogara
E. Bezerra
L. Coelho
41
1
0
24 Mar 2023
Unsupervised Learning for Solving the Travelling Salesman Problem
Yimeng Min
Yiwei Bai
Carla P. Gomes
OT
23
36
0
19 Mar 2023
A hybrid deep-learning-metaheuristic framework for bi-level network design problems
B. Madadi
Gonçalo Homem de Almeida Rodriguez Correia
16
4
0
10 Mar 2023
Preference-Aware Delivery Planning for Last-Mile Logistics
Qian Shao
Shih-Fen Cheng
14
1
0
08 Mar 2023
Neural Airport Ground Handling
Yaoxin Wu
Jianan Zhou
Yunwen Xia
Xianli Zhang
Zhiguang Cao
Jie Zhang
AI4TS
48
10
0
04 Mar 2023
Heuristics for Vehicle Routing Problem: A Survey and Recent Advances
Fei Liu
Chengyu Lu
Lin Gui
Qingfu Zhang
Xialiang Tong
M. Yuan
25
15
0
01 Mar 2023
ASP: Learn a Universal Neural Solver!
Chenguang Wang
Zhouliang Yu
Stephen Marcus McAleer
Tianshu Yu
Yao-Chun Yang
AAML
32
24
0
01 Mar 2023
Graph Reinforcement Learning for Operator Selection in the ALNS Metaheuristic
Syu-Ning Johnn
Victor-Alexandru Darvariu
J. Handl
Joerg Kalcsics
13
2
0
28 Feb 2023
WISK: A Workload-aware Learned Index for Spatial Keyword Queries
Yufan Sheng
Xin Cao
Yixiang Fang
Kaiqi Zhao
Jianzhong Qi
Gao Cong
Wenjie Zhang
12
17
0
28 Feb 2023
Machine Learning for Cutting Planes in Integer Programming: A Survey
Arnaud Deza
Elias Boutros Khalil
25
24
0
17 Feb 2023
Semiconductor Fab Scheduling with Self-Supervised and Reinforcement Learning
Pierre Tassel
Benjamin Kovács
M. Gebser
Konstantin Schekotihin
Patrick Stöckermann
Georg Seidel
15
5
0
14 Feb 2023
Learning-based Online Optimization for Autonomous Mobility-on-Demand Fleet Control
Kai Jungel
Axel Parmentier
Maximilian Schiffer
Thibaut Vidal
18
11
0
08 Feb 2023
Digital Twin Applications in Urban Logistics: An Overview
Abdo Abouelrous
Laurens Bliek
Yingqian Zhang
AI4CE
13
15
0
01 Feb 2023
Learning Cut Selection for Mixed-Integer Linear Programming via Hierarchical Sequence Model
Zhihai Wang
Xijun Li
Jie Wang
Yufei Kuang
M. Yuan
Jianguo Zeng
Yongdong Zhang
Feng Wu
26
39
0
01 Feb 2023
Partitioning Distributed Compute Jobs with Reinforcement Learning and Graph Neural Networks
Christopher W. F. Parsonson
Zacharaya Shabka
Alessandro Ottino
G. Zervas
34
0
0
31 Jan 2023
Learning Coordination Policies over Heterogeneous Graphs for Human-Robot Teams via Recurrent Neural Schedule Propagation
Batuhan Altundas
Zheyuan Wang
Joshua Bishop
Matthew C. Gombolay
31
4
0
30 Jan 2023
A Sequential Deep Learning Algorithm for Sampled Mixed-integer Optimisation Problems
M. Chamanbaz
Roland Bouffanais
6
1
0
25 Jan 2023
Learning To Dive In Branch And Bound
Max B. Paulus
Andreas Krause
29
4
0
24 Jan 2023
Two-Stage Learning For the Flexible Job Shop Scheduling Problem
Wenbo Chen
Reem Khir
Pascal Van Hentenryck
17
4
0
23 Jan 2023
Robust Scheduling with GFlowNets
David W. Zhang
Corrado Rainone
M. Peschl
Roberto Bondesan
29
49
0
17 Jan 2023
BQ-NCO: Bisimulation Quotienting for Efficient Neural Combinatorial Optimization
Darko Drakulic
Sofia Michel
Florian Mai
Arnaud Sors
J. Andreoli
OffRL
41
32
0
09 Jan 2023
Learning a Generic Value-Selection Heuristic Inside a Constraint Programming Solver
Tom Marty
Tristan François
Pierre Tessier
Louis Gautier
Louis-Martin Rousseau
Quentin Cappart
46
7
0
05 Jan 2023
A machine learning framework for neighbor generation in metaheuristic search
De-You Liu
Vincent Perreault
A. Hertz
Andrea Lodi
14
7
0
22 Dec 2022
Learning to repeatedly solve routing problems
Mouad Morabit
G. Desaulniers
Andrea Lodi
17
3
0
15 Dec 2022
Learning Markov Random Fields for Combinatorial Structures via Sampling through Lovász Local Lemma
Nan Jiang
Yi Gu
Yexiang Xue
27
0
0
01 Dec 2022
Denoising Diffusion for Sampling SAT Solutions
Kārlis Freivalds
Sergejs Kozlovics
13
2
0
30 Nov 2022
Enhancing Constraint Programming via Supervised Learning for Job Shop Scheduling
Yuan Sun
Su Nguyen
D. Thiruvady
Xiaodong Li
Andreas T. Ernst
U. Aickelin
12
2
0
26 Nov 2022
How to predict and optimise with asymmetric error metrics
M. Abolghasemi
Richard Bean
14
4
0
24 Nov 2022
Actively Learning Costly Reward Functions for Reinforcement Learning
André Eberhard
Houssam Metni
G. Fahland
A. Stroh
Pascal Friederich
OffRL
35
0
0
23 Nov 2022
UNSAT Solver Synthesis via Monte Carlo Forest Search
Chris Cameron
Jason S. Hartford
Taylor Lundy
T. Truong
Alan Milligan
Rex Chen
Kevin Leyton-Brown
21
1
0
22 Nov 2022
Arbitrarily Large Labelled Random Satisfiability Formulas for Machine Learning Training
D. Achlioptas
Amrit Daswaney
Periklis A. Papakonstantinou
NAI
BDL
15
0
0
21 Nov 2022
Deep Reinforcement Learning Guided Improvement Heuristic for Job Shop Scheduling
Cong Zhang
Zhiguang Cao
Wen Song
Puay Siew Tan
Jie Zhang
17
15
0
20 Nov 2022
A Survey on Influence Maximization: From an ML-Based Combinatorial Optimization
Yandi Li
Haobo Gao
Yunxuan Gao
Jianxiong Guo
Weili Wu
24
38
0
06 Nov 2022
Learning to Optimize Permutation Flow Shop Scheduling via Graph-based Imitation Learning
Longkang Li
Siyuan Liang
Zihao Zhu
Chris H. Q. Ding
Hong Zha
Baoyuan Wu
AI4CE
7
7
0
31 Oct 2022
Learning to Compare Nodes in Branch and Bound with Graph Neural Networks
Abdel Ghani Labassi
Didier Chételat
Andrea Lodi
24
31
0
30 Oct 2022
End-to-End Pareto Set Prediction with Graph Neural Networks for Multi-objective Facility Location
Shiqing Liu
Xueming Yan
Yaochu Jin
37
9
0
27 Oct 2022
SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems
Aaron Ferber
Taoan Huang
Daochen Zha
M. Schubert
Benoit Steiner
B. Dilkina
Yuandong Tian
41
20
0
22 Oct 2022
Machine Learning for K-adaptability in Two-stage Robust Optimization
Esther Julien
Krzysztof Postek
cS. .Ilker Birbil
36
2
0
20 Oct 2022
On Representing Mixed-Integer Linear Programs by Graph Neural Networks
Ziang Chen
Jialin Liu
Xinshang Wang
Jian Lu
W. Yin
AI4CE
32
16
0
19 Oct 2022
ToupleGDD: A Fine-Designed Solution of Influence Maximization by Deep Reinforcement Learning
Tiantian Chen
Siwen Yan
Jianxiong Guo
Weili Wu
14
22
0
14 Oct 2022
Winner Takes It All: Training Performant RL Populations for Combinatorial Optimization
Nathan Grinsztajn
Daniel Furelos-Blanco
Shikha Surana
Clément Bonnet
Thomas D. Barrett
54
28
0
07 Oct 2022
On Representing Linear Programs by Graph Neural Networks
Ziang Chen
Jialin Liu
Xinshang Wang
Jian Lu
W. Yin
AI4CE
60
31
0
25 Sep 2022
Deep Attentive Belief Propagation: Integrating Reasoning and Learning for Solving Constraint Optimization Problems
Yanchen Deng
Shufeng Kong
Caihua Liu
Bo An
11
4
0
24 Sep 2022
Previous
1
2
3
4
5
6
...
9
10
11
Next