ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.07157
11
0

Recurrent Convolutions for Causal 3D CNNs

17 November 2018
Gurkirt Singh
Fabio Cuzzolin
    3DPC
ArXivPDFHTML
Abstract

Recently, three dimensional (3D) convolutional neural networks (CNNs) have emerged as dominant methods to capture spatiotemporal representations in videos, by adding to pre-existing 2D CNNs a third, temporal dimension. Such 3D CNNs, however, are anti-causal (i.e., they exploit information from both the past and the future frames to produce feature representations, thus preventing their use in online settings), constrain the temporal reasoning horizon to the size of the temporal convolution kernel, and are not temporal resolution-preserving for video sequence-to-sequence modelling, as, for instance, in action detection. To address these serious limitations, here we present a new 3D CNN architecture for the causal/online processing of videos. Namely, we propose a novel Recurrent Convolutional Network (RCN), which relies on recurrence to capture the temporal context across frames at each network level. Our network decomposes 3D convolutions into (1) a 2D spatial convolution component, and (2) an additional hidden state 1×11\times 11×1 convolution, applied across time. The hidden state at any time ttt is assumed to depend on the hidden state at t−1t-1t−1 and on the current output of the spatial convolution component. As a result, the proposed network: (i) produces causal outputs, (ii) provides flexible temporal reasoning, (iii) preserves temporal resolution. Our experiments on the large-scale large Kinetics and MultiThumos datasets show that the proposed method performs comparably to anti-causal 3D CNNs, while being causal and using fewer parameters.

View on arXiv
Comments on this paper