ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.07555
13
11

Three Dimensional Convolutional Neural Network Pruning with Regularization-Based Method

19 November 2018
Yu-xin Zhang
Huan Wang
Yang Luo
Lu Yu
Roland Hu
Hangguan Shan
Tony Q. S. Quek
    3DPC
ArXivPDFHTML
Abstract

Despite enjoying extensive applications in video analysis, three-dimensional convolutional neural networks (3D CNNs)are restricted by their massive computation and storage consumption. To solve this problem, we propose a threedimensional regularization-based neural network pruning method to assign different regularization parameters to different weight groups based on their importance to the network. Further we analyze the redundancy and computation cost for each layer to determine the different pruning ratios. Experiments show that pruning based on our method can lead to 2x theoretical speedup with only 0.41% accuracy loss for 3DResNet18 and 3.28% accuracy loss for C3D. The proposed method performs favorably against other popular methods for model compression and acceleration.

View on arXiv
Comments on this paper