Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.09112
Cited By
v1
v2 (latest)
Machine learning enables long time scale molecular photodynamics simulations
22 November 2018
Julia Westermayr
M. Gastegger
M. Menger
Sebastian Mai
L. González
Marquetand
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Machine learning enables long time scale molecular photodynamics simulations"
9 / 9 papers shown
Title
Ab-initio simulation of excited-state potential energy surfaces with transferable deep quantum Monte Carlo
Zeno Schätzle
P. Szabó
Alice Cuzzocrea
Frank Noé
109
1
0
25 Mar 2025
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
113
9
0
12 Mar 2025
Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments
Viktor Zaverkin
Julia Netz
Fabian Zills
Andreas Köhn
Johannes Kastner
AI4CE
49
18
0
03 Dec 2023
From Peptides to Nanostructures: A Euclidean Transformer for Fast and Stable Machine Learned Force Fields
J. Frank
Oliver T. Unke
Klaus-Robert Muller
Stefan Chmiela
69
3
0
21 Sep 2023
Lifelong Machine Learning Potentials
Marco Eckhoff
Markus Reiher
113
24
0
10 Mar 2023
Learning Large-Time-Step Molecular Dynamics with Graph Neural Networks
Tian Zheng
Weihao Gao
Chong-Jun Wang
AI4CE
68
4
0
30 Nov 2021
Excited state, non-adiabatic dynamics of large photoswitchable molecules using a chemically transferable machine learning potential
Simon Axelrod
E. Shakhnovich
Rafael Gómez-Bombarelli
101
53
0
10 Aug 2021
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
143
940
0
14 Oct 2020
Combining SchNet and SHARC: The SchNarc machine learning approach for excited-state dynamics
Julia Westermayr
M. Gastegger
P. Marquetand
AI4CE
67
131
0
17 Feb 2020
1