Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.09794
Cited By
Three-Dimensionally Embedded Graph Convolutional Network (3DGCN) for Molecule Interpretation
24 November 2018
Hyeoncheol Cho
I. Choi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Three-Dimensionally Embedded Graph Convolutional Network (3DGCN) for Molecule Interpretation"
6 / 6 papers shown
Title
Predicting solvation free energies with an implicit solvent machine learning potential
Sebastien Röcken
A. F. Burnet
J. Zavadlav
AI4Cl
AI4CE
66
3
0
31 May 2024
3D-Mol: A Novel Contrastive Learning Framework for Molecular Property Prediction with 3D Information
Taojie Kuang
Yiming Ren
Zhixiang Ren
23
7
0
28 Sep 2023
Deep Molecular Representation Learning via Fusing Physical and Chemical Information
Shuwen Yang
Ziyao Li
Guojie Song
Lingsheng Cai
AI4CE
38
28
0
28 Nov 2021
Learning from Protein Structure with Geometric Vector Perceptrons
Bowen Jing
Stephan Eismann
Patricia Suriana
Raphael J. L. Townshend
R. Dror
GNN
3DV
22
470
0
03 Sep 2020
InteractionNet: Modeling and Explaining of Noncovalent Protein-Ligand Interactions with Noncovalent Graph Neural Network and Layer-Wise Relevance Propagation
Hyeoncheol Cho
E. Lee
I. Choi
GNN
FAtt
12
4
0
12 May 2020
Molecule Attention Transformer
Lukasz Maziarka
Tomasz Danel
Slawomir Mucha
Krzysztof Rataj
Jacek Tabor
Stanislaw Jastrzebski
11
167
0
19 Feb 2020
1