ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.11213
  4. Cited By
DLHub: Model and Data Serving for Science

DLHub: Model and Data Serving for Science

27 November 2018
Ryan Chard
Zhuozhao Li
Kyle Chard
Logan T. Ward
Y. Babuji
A. Woodard
S. Tuecke
B. Blaiszik
Michael Franklin
Ian T. Foster
ArXivPDFHTML

Papers citing "DLHub: Model and Data Serving for Science"

8 / 8 papers shown
Title
S$^{3}$: Increasing GPU Utilization during Generative Inference for
  Higher Throughput
S3^{3}3: Increasing GPU Utilization during Generative Inference for Higher Throughput
Yunho Jin
Chun-Feng Wu
David Brooks
Gu-Yeon Wei
29
62
0
09 Jun 2023
AICCA: AI-driven Cloud Classification Atlas
AICCA: AI-driven Cloud Classification Atlas
Takuya Kurihana
Elisabeth Moyer
Ian T. Foster
12
12
0
29 Sep 2022
RIBBON: Cost-Effective and QoS-Aware Deep Learning Model Inference using
  a Diverse Pool of Cloud Computing Instances
RIBBON: Cost-Effective and QoS-Aware Deep Learning Model Inference using a Diverse Pool of Cloud Computing Instances
Baolin Li
Rohan Basu Roy
Tirthak Patel
V. Gadepally
K. Gettings
Devesh Tiwari
24
25
0
23 Jul 2022
FAIR principles for AI models with a practical application for
  accelerated high energy diffraction microscopy
FAIR principles for AI models with a practical application for accelerated high energy diffraction microscopy
Nikil Ravi
Pranshu Chaturvedi
Eliu A. Huerta
Zhengchun Liu
Ryan Chard
Aristana Scourtas
K. J. Schmidt
Kyle Chard
B. Blaiszik
Ian T. Foster
37
26
0
01 Jul 2022
Inference-optimized AI and high performance computing for gravitational
  wave detection at scale
Inference-optimized AI and high performance computing for gravitational wave detection at scale
Pranshu Chaturvedi
Asad Khan
Minyang Tian
Eliu A. Huerta
Huihuo Zheng
8
29
0
26 Jan 2022
Performance, Successes and Limitations of Deep Learning Semantic
  Segmentation of Multiple Defects in Transmission Electron Micrographs
Performance, Successes and Limitations of Deep Learning Semantic Segmentation of Multiple Defects in Transmission Electron Micrographs
Ryan Jacobs
Mingren Shen
Yuhan Liu
Wei Hao
Xiaoshan Li
...
Zeming Xie
Zitong Huang
Chao Wang
Kevin G. Field
D. Morgan
15
2
0
15 Oct 2021
Serverless Supercomputing: High Performance Function as a Service for
  Science
Serverless Supercomputing: High Performance Function as a Service for Science
Ryan Chard
Tyler J. Skluzacek
Zhuozhao Li
Y. Babuji
A. Woodard
B. Blaiszik
S. Tuecke
Ian T. Foster
Kyle Chard
LRM
13
34
0
14 Aug 2019
IRNet: A General Purpose Deep Residual Regression Framework for
  Materials Discovery
IRNet: A General Purpose Deep Residual Regression Framework for Materials Discovery
Dipendra Jha
Logan T. Ward
Zijiang Yang
C. Wolverton
Ian T. Foster
W. Liao
A. Choudhary
Ankit Agrawal
PINN
11
44
0
07 Jul 2019
1