ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.11597
  4. Cited By
Automated Algorithm Selection: Survey and Perspectives

Automated Algorithm Selection: Survey and Perspectives

28 November 2018
P. Kerschke
Holger H. Hoos
Frank Neumann
Heike Trautmann
ArXiv (abs)PDFHTML

Papers citing "Automated Algorithm Selection: Survey and Perspectives"

17 / 67 papers shown
Title
Black Magic in Deep Learning: How Human Skill Impacts Network Training
Black Magic in Deep Learning: How Human Skill Impacts Network Training
Kanav Anand
Ziqi Wang
Marco Loog
Jan van Gemert
HAI
57
16
0
13 Aug 2020
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Matthias Feurer
Katharina Eggensperger
Stefan Falkner
Marius Lindauer
Frank Hutter
119
285
0
08 Jul 2020
Benchmarking in Optimization: Best Practice and Open Issues
Benchmarking in Optimization: Best Practice and Open Issues
Thomas Bartz-Beielstein
Carola Doerr
Daan van den Berg
Jakob Bossek
Sowmya Chandrasekaran
...
B. Naujoks
Patryk Orzechowski
Vanessa Volz
Markus Wagner
T. Weise
138
112
0
07 Jul 2020
Deep Learning as a Competitive Feature-Free Approach for Automated
  Algorithm Selection on the Traveling Salesperson Problem
Deep Learning as a Competitive Feature-Free Approach for Automated Algorithm Selection on the Traveling Salesperson Problem
M. Seiler
J. Pohl
Jakob Bossek
P. Kerschke
Heike Trautmann
33
21
0
29 Jun 2020
Exploratory Landscape Analysis is Strongly Sensitive to the Sampling
  Strategy
Exploratory Landscape Analysis is Strongly Sensitive to the Sampling Strategy
Quentin Renau
Carola Doerr
Johann Dréo
Benjamin Doerr
120
60
0
19 Jun 2020
Landscape-Aware Fixed-Budget Performance Regression and Algorithm
  Selection for Modular CMA-ES Variants
Landscape-Aware Fixed-Budget Performance Regression and Algorithm Selection for Modular CMA-ES Variants
Anja Jankovic
Carola Doerr
58
38
0
17 Jun 2020
Anytime Behavior of Inexact TSP Solvers and Perspectives for Automated
  Algorithm Selection
Anytime Behavior of Inexact TSP Solvers and Perspectives for Automated Algorithm Selection
Jakob Bossek
P. Kerschke
Heike Trautmann
22
3
0
27 May 2020
Versatile Black-Box Optimization
Versatile Black-Box Optimization
Jialin Liu
A. Moreau
Mike Preuss
Baptiste Roziere
Jérémy Rapin
F. Teytaud
O. Teytaud
57
38
0
29 Apr 2020
Initial Design Strategies and their Effects on Sequential Model-Based
  Optimization
Initial Design Strategies and their Effects on Sequential Model-Based Optimization
Jakob Bossek
Carola Doerr
P. Kerschke
70
27
0
30 Mar 2020
Online Preselection with Context Information under the Plackett-Luce
  Model
Online Preselection with Context Information under the Plackett-Luce Model
Adil El Mesaoudi-Paul
Viktor Bengs
Eyke Hüllermeier
43
4
0
11 Feb 2020
Extreme Algorithm Selection With Dyadic Feature Representation
Extreme Algorithm Selection With Dyadic Feature Representation
Alexander Tornede
Marcel Wever
Eyke Hüllermeier
49
21
0
29 Jan 2020
Benchmarking Discrete Optimization Heuristics with IOHprofiler
Benchmarking Discrete Optimization Heuristics with IOHprofiler
Carola Doerr
Furong Ye
Naama Horesh
Hao Wang
O. M. Shir
Thomas Bäck
91
73
0
19 Dec 2019
Preselection Bandits
Preselection Bandits
Viktor Bengs
Eyke Hüllermeier
47
6
0
13 Jul 2019
Instruction-Level Design of Local Optimisers using Push GP
Instruction-Level Design of Local Optimisers using Push GP
M. Lones
62
11
0
24 May 2019
Online Selection of CMA-ES Variants
Online Selection of CMA-ES Variants
Diederick Vermetten
Sander van Rijn
Thomas Bäck
Carola Doerr
59
26
0
16 Apr 2019
Predicting Good Configurations for GitHub and Stack Overflow Topic
  Models
Predicting Good Configurations for GitHub and Stack Overflow Topic Models
Christoph Treude
Markus Wagner
56
41
0
13 Apr 2018
Practical Transfer Learning for Bayesian Optimization
Practical Transfer Learning for Bayesian Optimization
Matthias Feurer
Benjamin Letham
Frank Hutter
E. Bakshy
142
35
0
06 Feb 2018
Previous
12