ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.12535
11
27

The Relevance of Bayesian Layer Positioning to Model Uncertainty in Deep Bayesian Active Learning

29 November 2018
Jiaming Zeng
Adam Lesnikowski
J. Álvarez
    OOD
    UQCV
    BDL
ArXivPDFHTML
Abstract

One of the main challenges of deep learning tools is their inability to capture model uncertainty. While Bayesian deep learning can be used to tackle the problem, Bayesian neural networks often require more time and computational power to train than deterministic networks. Our work explores whether fully Bayesian networks are needed to successfully capture model uncertainty. We vary the number and position of Bayesian layers in a network and compare their performance on active learning with the MNIST dataset. We found that we can fully capture the model uncertainty by using only a few Bayesian layers near the output of the network, combining the advantages of deterministic and Bayesian networks.

View on arXiv
Comments on this paper