ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.00793
  4. Cited By
Simulated Tempering Langevin Monte Carlo II: An Improved Proof using
  Soft Markov Chain Decomposition

Simulated Tempering Langevin Monte Carlo II: An Improved Proof using Soft Markov Chain Decomposition

29 November 2018
Rong Ge
Holden Lee
Andrej Risteski
ArXivPDFHTML

Papers citing "Simulated Tempering Langevin Monte Carlo II: An Improved Proof using Soft Markov Chain Decomposition"

7 / 7 papers shown
Title
Enhancing Gradient-based Discrete Sampling via Parallel Tempering
Enhancing Gradient-based Discrete Sampling via Parallel Tempering
Luxu Liang
Yuhang Jia
Feng Zhou
60
0
0
26 Feb 2025
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
Omar Chehab
Anna Korba
Austin Stromme
Adrien Vacher
35
2
0
13 Oct 2024
Proposal of a Score Based Approach to Sampling Using Monte Carlo
  Estimation of Score and Oracle Access to Target Density
Proposal of a Score Based Approach to Sampling Using Monte Carlo Estimation of Score and Oracle Access to Target Density
Curtis McDonald
Andrew R. Barron
DiffM
28
3
0
06 Dec 2022
Perfect Sampling from Pairwise Comparisons
Perfect Sampling from Pairwise Comparisons
Dimitris Fotakis
Alkis Kalavasis
Christos Tzamos
26
3
0
23 Nov 2022
Sampling Approximately Low-Rank Ising Models: MCMC meets Variational
  Methods
Sampling Approximately Low-Rank Ising Models: MCMC meets Variational Methods
Frederic Koehler
Holden Lee
Andrej Risteski
24
21
0
17 Feb 2022
Spectral Gap of Replica Exchange Langevin Diffusion on Mixture
  Distributions
Spectral Gap of Replica Exchange Langevin Diffusion on Mixture Distributions
Jing-rong Dong
Xin T. Tong
19
9
0
29 Jun 2020
On the Convergence of Langevin Monte Carlo: The Interplay between Tail
  Growth and Smoothness
On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness
Murat A. Erdogdu
Rasa Hosseinzadeh
11
74
0
27 May 2020
1