ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.01762
  4. Cited By
Deep Positron: A Deep Neural Network Using the Posit Number System
v1v2 (latest)

Deep Positron: A Deep Neural Network Using the Posit Number System

5 December 2018
Zachariah Carmichael
Seyed Hamed Fatemi Langroudi
Char Khazanov
Jeffrey Lillie
J. Gustafson
Dhireesha Kudithipudi
    MQ
ArXiv (abs)PDFHTML

Papers citing "Deep Positron: A Deep Neural Network Using the Posit Number System"

22 / 22 papers shown
Title
Quantized Neural Networks for Microcontrollers: A Comprehensive Review of Methods, Platforms, and Applications
Quantized Neural Networks for Microcontrollers: A Comprehensive Review of Methods, Platforms, and Applications
Hamza A. Abushahla
Dara Varam
Ariel J. N. Panopio
Mohamed I. AlHajri
MQ
336
1
0
20 Aug 2025
EntroLLM: Entropy Encoded Weight Compression for Efficient Large Language Model Inference on Edge Devices
EntroLLM: Entropy Encoded Weight Compression for Efficient Large Language Model Inference on Edge Devices
Arnab Sanyal
Gourav Datta
Gourav Datta
Sandeep P. Chinchali
Michael Orshansky
MQ
909
1
0
05 May 2025
EvGNN: An Event-driven Graph Neural Network Accelerator for Edge Vision
EvGNN: An Event-driven Graph Neural Network Accelerator for Edge Vision
Yufeng Yang
Adrian Kneip
Charlotte Frenkel
GNN
324
16
0
30 Apr 2024
Efficient and Mathematically Robust Operations for Certified Neural
  Networks Inference
Efficient and Mathematically Robust Operations for Certified Neural Networks Inference
Fabien Geyer
Johannes Freitag
Tobias Schulz
Sascha Uhrig
203
2
0
16 Jan 2024
Low-Precision Mixed-Computation Models for Inference on Edge
Low-Precision Mixed-Computation Models for Inference on Edge
Seyedarmin Azizi
M. Nazemi
M. Kamal
Massoud Pedram
MQ
210
5
0
03 Dec 2023
Design Principles for Lifelong Learning AI Accelerators
Design Principles for Lifelong Learning AI AcceleratorsNature Electronics (Nat. Electron.), 2023
Dhireesha Kudithipudi
Anurag Daram
Abdullah M. Zyarah
Fatima Tuz Zohora
J. Aimone
...
Emre Neftci
M. Mattina
Vincenzo Lomonaco
Clare D. Thiem
Benjamin Epstein
251
20
0
05 Oct 2023
Compressed Real Numbers for AI: a case-study using a RISC-V CPU
Compressed Real Numbers for AI: a case-study using a RISC-V CPU
Federico Rossi
M. Cococcioni
Roger Ferrer Ibáñez
Jesus Labarta
Filippo Mantovani
Marc Casas
E. Ruffaldi
Sergio Saponara
MQ
58
0
0
11 Sep 2023
Number Systems for Deep Neural Network Architectures: A Survey
Number Systems for Deep Neural Network Architectures: A Survey
Ghada Alsuhli
Vasileios Sakellariou
H. Saleh
Mahmoud Al-Qutayri
Baker Mohammad
T. Stouraitis
191
5
0
11 Jul 2023
PDPU: An Open-Source Posit Dot-Product Unit for Deep Learning
  Applications
PDPU: An Open-Source Posit Dot-Product Unit for Deep Learning ApplicationsInternational Symposium on Circuits and Systems (ISCAS), 2023
Qiong Li
Chao Fang
Zhongfeng Wang
95
10
0
03 Feb 2023
Resource-Efficient Deep Learning: A Survey on Model-, Arithmetic-, and
  Implementation-Level Techniques
Resource-Efficient Deep Learning: A Survey on Model-, Arithmetic-, and Implementation-Level TechniquesACM Computing Surveys (CSUR), 2021
JunKyu Lee
L. Mukhanov
A. S. Molahosseini
U. Minhas
Yang Hua
Jesus Martinez del Rincon
K. Dichev
Cheol-Ho Hong
Hans Vandierendonck
177
35
0
30 Dec 2021
Elastic Significant Bit Quantization and Acceleration for Deep Neural
  Networks
Elastic Significant Bit Quantization and Acceleration for Deep Neural NetworksIEEE Transactions on Parallel and Distributed Systems (TPDS), 2021
Cheng Gong
Ye Lu
Kunpeng Xie
Zongming Jin
Tao Li
Yanzhi Wang
MQ
212
7
0
08 Sep 2021
PositNN: Training Deep Neural Networks with Mixed Low-Precision Posit
PositNN: Training Deep Neural Networks with Mixed Low-Precision PositIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2021
Gonçalo Raposo
P. Tomás
Nuno Roma
MQ
189
22
0
30 Apr 2021
PLAM: a Posit Logarithm-Approximate Multiplier
PLAM: a Posit Logarithm-Approximate MultiplierIEEE Transactions on Emerging Topics in Computing (TETC), 2021
Raul Murillo
Alberto A. Del Barrio
Guillermo Botella
Min Soo Kim
Hyunjin Kim
N. Bagherzadeh
TPM
202
37
0
18 Feb 2021
ExPAN(N)D: Exploring Posits for Efficient Artificial Neural Network
  Design in FPGA-based Systems
ExPAN(N)D: Exploring Posits for Efficient Artificial Neural Network Design in FPGA-based SystemsIEEE Access (IEEE Access), 2020
S. Nambi
Salim Ullah
Aditya Lohana
Siva Satyendra Sahoo
Farhad Merchant
Akash Kumar
200
13
0
24 Oct 2020
Degree-Quant: Quantization-Aware Training for Graph Neural Networks
Degree-Quant: Quantization-Aware Training for Graph Neural NetworksInternational Conference on Learning Representations (ICLR), 2020
Shyam A. Tailor
Javier Fernandez-Marques
Nicholas D. Lane
GNNMQ
281
168
0
11 Aug 2020
Searching for Winograd-aware Quantized Networks
Searching for Winograd-aware Quantized NetworksConference on Machine Learning and Systems (MLSys), 2020
Javier Fernandez-Marques
P. Whatmough
Andrew Mundy
Matthew Mattina
MQ
120
40
0
25 Feb 2020
AdaptivFloat: A Floating-point based Data Type for Resilient Deep
  Learning Inference
AdaptivFloat: A Floating-point based Data Type for Resilient Deep Learning Inference
Thierry Tambe
En-Yu Yang
Zishen Wan
Yuntian Deng
Vijay Janapa Reddi
Alexander M. Rush
David Brooks
Gu-Yeon Wei
MQ
97
23
0
29 Sep 2019
Training Deep Neural Networks Using Posit Number System
Training Deep Neural Networks Using Posit Number SystemACM Symposium on Cloud Computing (SoCC), 2019
Jinming Lu
Siyuan Lu
Zhisheng Wang
Chao Fang
Jun Lin
Zhongfeng Wang
Li Du
MQ
105
16
0
06 Sep 2019
Cheetah: Mixed Low-Precision Hardware & Software Co-Design Framework for
  DNNs on the Edge
Cheetah: Mixed Low-Precision Hardware & Software Co-Design Framework for DNNs on the Edge
H. F. Langroudi
Zachariah Carmichael
David Pastuch
Dhireesha Kudithipudi
143
24
0
06 Aug 2019
Deep Learning Training on the Edge with Low-Precision Posits
Deep Learning Training on the Edge with Low-Precision Posits
H. F. Langroudi
Zachariah Carmichael
Dhireesha Kudithipudi
MQ
129
15
0
30 Jul 2019
Template-Based Posit Multiplication for Training and Inferring in Neural
  Networks
Template-Based Posit Multiplication for Training and Inferring in Neural Networks
Raul Murillo
Alberto A. Del Barrio
Guillermo Botella Juan
97
18
0
09 Jul 2019
Performance-Efficiency Trade-off of Low-Precision Numerical Formats in
  Deep Neural Networks
Performance-Efficiency Trade-off of Low-Precision Numerical Formats in Deep Neural Networks
Zachariah Carmichael
H. F. Langroudi
Char Khazanov
Jeffrey Lillie
J. Gustafson
Dhireesha Kudithipudi
113
56
0
25 Mar 2019
1