ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.02466
6
4

Deep Embedding using Bayesian Risk Minimization with Application to Sketch Recognition

6 December 2018
Anand Mishra
A. Singh
    BDL
    UQCV
ArXivPDFHTML
Abstract

In this paper, we address the problem of hand-drawn sketch recognition. Inspired by the Bayesian decision theory, we present a deep metric learning loss with the objective to minimize the Bayesian risk of misclassification. We estimate this risk for every mini-batch during training, and learn robust deep embeddings by backpropagating it to a deep neural network in an end-to-end trainable paradigm. Our learnt embeddings are discriminative and robust despite of intra-class variations and inter-class similarities naturally present in hand-drawn sketch images. Outperforming the state of the art on sketch recognition, our method achieves 82.2% and 88.7% on TU-Berlin-250 and TU-Berlin-160 benchmarks respectively.

View on arXiv
Comments on this paper