ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.05159
  4. Cited By
An Empirical Study of Example Forgetting during Deep Neural Network
  Learning

An Empirical Study of Example Forgetting during Deep Neural Network Learning

12 December 2018
Mariya Toneva
Alessandro Sordoni
Rémi Tachet des Combes
Adam Trischler
Yoshua Bengio
Geoffrey J. Gordon
ArXivPDFHTML

Papers citing "An Empirical Study of Example Forgetting during Deep Neural Network Learning"

50 / 482 papers shown
Title
Diversity Measurement and Subset Selection for Instruction Tuning
  Datasets
Diversity Measurement and Subset Selection for Instruction Tuning Datasets
Peiqi Wang
Yikang Shen
Zhen Guo
Matt Stallone
Yoon Kim
Polina Golland
Rameswar Panda
23
8
0
04 Feb 2024
What Will My Model Forget? Forecasting Forgotten Examples in Language
  Model Refinement
What Will My Model Forget? Forecasting Forgotten Examples in Language Model Refinement
Xisen Jin
Xiang Ren
KELM
CLL
20
6
0
02 Feb 2024
LTAU-FF: Loss Trajectory Analysis for Uncertainty in Atomistic Force
  Fields
LTAU-FF: Loss Trajectory Analysis for Uncertainty in Atomistic Force Fields
Joshua A. Vita
Amit Samanta
Fei Zhou
Vincenzo Lordi
25
2
0
01 Feb 2024
FedCore: Straggler-Free Federated Learning with Distributed Coresets
FedCore: Straggler-Free Federated Learning with Distributed Coresets
Hongpeng Guo
Haotian Gu
Xiaoyang Wang
Bo Chen
Eun Kyung Lee
Tamar Eilam
Deming Chen
K. Nahrstedt
FedML
18
1
0
31 Jan 2024
Contributing Dimension Structure of Deep Feature for Coreset Selection
Contributing Dimension Structure of Deep Feature for Coreset Selection
Zhijing Wan
Zhixiang Wang
Yuran Wang
Zheng Wang
Hongyuan Zhu
Shiníchi Satoh
25
6
0
29 Jan 2024
Importance-Aware Adaptive Dataset Distillation
Importance-Aware Adaptive Dataset Distillation
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
28
6
0
29 Jan 2024
BackdoorBench: A Comprehensive Benchmark and Analysis of Backdoor
  Learning
BackdoorBench: A Comprehensive Benchmark and Analysis of Backdoor Learning
Baoyuan Wu
Hongrui Chen
Mingda Zhang
Zihao Zhu
Shaokui Wei
Danni Yuan
Mingli Zhu
Ruotong Wang
Li Liu
Chaoxiao Shen
AAML
ELM
75
9
0
26 Jan 2024
One Step Learning, One Step Review
One Step Learning, One Step Review
Xiaolong Huang
Qiankun Li
Xueran Li
Xuesong Gao
26
1
0
19 Jan 2024
lpNTK: Better Generalisation with Less Data via Sample Interaction
  During Learning
lpNTK: Better Generalisation with Less Data via Sample Interaction During Learning
Shangmin Guo
Yi Ren
Stefano V.Albrecht
Kenny Smith
28
3
0
16 Jan 2024
Effective pruning of web-scale datasets based on complexity of concept
  clusters
Effective pruning of web-scale datasets based on complexity of concept clusters
Amro Abbas
E. Rusak
Kushal Tirumala
Wieland Brendel
Kamalika Chaudhuri
Ari S. Morcos
VLM
CLIP
34
22
0
09 Jan 2024
Towards Explainable Artificial Intelligence (XAI): A Data Mining
  Perspective
Towards Explainable Artificial Intelligence (XAI): A Data Mining Perspective
Haoyi Xiong
Xuhong Li
Xiaofei Zhang
Jiamin Chen
Xinhao Sun
Yuchen Li
Zeyi Sun
Mengnan Du
XAI
40
8
0
09 Jan 2024
Dataset Difficulty and the Role of Inductive Bias
Dataset Difficulty and the Role of Inductive Bias
Devin Kwok
Nikhil Anand
Jonathan Frankle
Gintare Karolina Dziugaite
David Rolnick
40
5
0
03 Jan 2024
ReliCD: A Reliable Cognitive Diagnosis Framework with Confidence
  Awareness
ReliCD: A Reliable Cognitive Diagnosis Framework with Confidence Awareness
Yunfei Zhang
Chuan Qin
Dazhong Shen
Haiping Ma
Le Zhang
Xingyi Zhang
Hengshu Zhu
17
5
0
29 Dec 2023
M3D: Dataset Condensation by Minimizing Maximum Mean Discrepancy
M3D: Dataset Condensation by Minimizing Maximum Mean Discrepancy
Hansong Zhang
Shikun Li
Pengju Wang
Dan Zeng
Shiming Ge
DD
19
21
0
26 Dec 2023
Mixture Data for Training Cannot Ensure Out-of-distribution
  Generalization
Mixture Data for Training Cannot Ensure Out-of-distribution Generalization
Songming Zhang
Yuxiao Luo
Qizhou Wang
Haoang Chi
Xiaofeng Chen
Bo Han
Jinyan Li
OODD
30
0
0
25 Dec 2023
On the Convergence of Loss and Uncertainty-based Active Learning
  Algorithms
On the Convergence of Loss and Uncertainty-based Active Learning Algorithms
Daniel Haimovich
Dima Karamshuk
Fridolin Linder
Niek Tax
Milan Vojnovic
21
0
0
21 Dec 2023
Efficient Architecture Search via Bi-level Data Pruning
Efficient Architecture Search via Bi-level Data Pruning
Chongjun Tu
Peng Ye
Weihao Lin
Hancheng Ye
Chong Yu
Tao Chen
Baopu Li
Wanli Ouyang
40
2
0
21 Dec 2023
Learning and Forgetting Unsafe Examples in Large Language Models
Learning and Forgetting Unsafe Examples in Large Language Models
Jiachen Zhao
Zhun Deng
David Madras
James Zou
Mengye Ren
MU
KELM
CLL
83
16
0
20 Dec 2023
ConsistentEE: A Consistent and Hardness-Guided Early Exiting Method for
  Accelerating Language Models Inference
ConsistentEE: A Consistent and Hardness-Guided Early Exiting Method for Accelerating Language Models Inference
Ziqian Zeng
Yihuai Hong
Hongliang Dai
Huiping Zhuang
Cen Chen
19
10
0
19 Dec 2023
Dataset Distillation via Adversarial Prediction Matching
Dataset Distillation via Adversarial Prediction Matching
Mingyang Chen
Bo Huang
Junda Lu
Bing Li
Yi Wang
Minhao Cheng
Wei Wang
DD
18
5
0
14 Dec 2023
Reconciling Shared versus Context-Specific Information in a Neural
  Network Model of Latent Causes
Reconciling Shared versus Context-Specific Information in a Neural Network Model of Latent Causes
Qihong Lu
Tan Nguyen
Qiong Zhang
Uri Hasson
Thomas L. Griffiths
Jeffrey M. Zacks
Samuel Gershman
K. A. Norman
30
4
0
13 Dec 2023
Not All Data Matters: An End-to-End Adaptive Dataset Pruning Framework
  for Enhancing Model Performance and Efficiency
Not All Data Matters: An End-to-End Adaptive Dataset Pruning Framework for Enhancing Model Performance and Efficiency
Suorong Yang
Hongchao Yang
Suhan Guo
Shen Furao
Jian Zhao
17
2
0
09 Dec 2023
Bad Students Make Great Teachers: Active Learning Accelerates
  Large-Scale Visual Understanding
Bad Students Make Great Teachers: Active Learning Accelerates Large-Scale Visual Understanding
Talfan Evans
Shreya Pathak
Hamza Merzic
Jonathan Schwarz
Ryutaro Tanno
Olivier J. Hénaff
18
16
0
08 Dec 2023
Transferable Candidate Proposal with Bounded Uncertainty
Transferable Candidate Proposal with Bounded Uncertainty
Kyeongryeol Go
Kye-Hyeon Kim
24
0
0
07 Dec 2023
On the Diversity and Realism of Distilled Dataset: An Efficient Dataset
  Distillation Paradigm
On the Diversity and Realism of Distilled Dataset: An Efficient Dataset Distillation Paradigm
Peng Sun
Bei Shi
Daiwei Yu
Tao Lin
DD
17
37
0
06 Dec 2023
Influence Scores at Scale for Efficient Language Data Sampling
Influence Scores at Scale for Efficient Language Data Sampling
Nikhil Anand
Joshua Tan
Maria Minakova
TDI
32
3
0
27 Nov 2023
RISAM: Referring Image Segmentation via Mutual-Aware Attention Features
RISAM: Referring Image Segmentation via Mutual-Aware Attention Features
Mengxi Zhang
Yiming Liu
Xiangjun Yin
Huanjing Yue
Jingyu Yang
31
0
0
27 Nov 2023
Dataset Distillation in Latent Space
Dataset Distillation in Latent Space
Yuxuan Duan
Jianfu Zhang
Liqing Zhang
DD
45
6
0
27 Nov 2023
Class-Adaptive Sampling Policy for Efficient Continual Learning
Class-Adaptive Sampling Policy for Efficient Continual Learning
Hossein Rezaei
Mohammad Sabokrou
19
0
0
27 Nov 2023
Spanning Training Progress: Temporal Dual-Depth Scoring (TDDS) for
  Enhanced Dataset Pruning
Spanning Training Progress: Temporal Dual-Depth Scoring (TDDS) for Enhanced Dataset Pruning
Xin Zhang
Jiawei Du
Yunsong Li
Weiying Xie
Joey Tianyi Zhou
37
7
0
22 Nov 2023
Bayesian Neural Networks: A Min-Max Game Framework
Bayesian Neural Networks: A Min-Max Game Framework
Junping Hong
E. Kuruoglu
25
0
0
18 Nov 2023
Refined Coreset Selection: Towards Minimal Coreset Size under Model
  Performance Constraints
Refined Coreset Selection: Towards Minimal Coreset Size under Model Performance Constraints
Xiaobo Xia
Jiale Liu
Shaokun Zhang
Qingyun Wu
Hongxin Wei
Tongliang Liu
42
9
0
15 Nov 2023
Embarassingly Simple Dataset Distillation
Embarassingly Simple Dataset Distillation
Yunzhen Feng
Ramakrishna Vedantam
Julia Kempe
DD
36
5
0
13 Nov 2023
Memorisation Cartography: Mapping out the Memorisation-Generalisation
  Continuum in Neural Machine Translation
Memorisation Cartography: Mapping out the Memorisation-Generalisation Continuum in Neural Machine Translation
Verna Dankers
Ivan Titov
Dieuwke Hupkes
35
5
0
09 Nov 2023
SoK: Memorisation in machine learning
SoK: Memorisation in machine learning
Dmitrii Usynin
Moritz Knolle
Georgios Kaissis
17
1
0
06 Nov 2023
A Simple and Efficient Baseline for Data Attribution on Images
A Simple and Efficient Baseline for Data Attribution on Images
Vasu Singla
Pedro Sandoval-Segura
Micah Goldblum
Jonas Geiping
Tom Goldstein
FAtt
30
3
0
03 Nov 2023
Data-Centric Long-Tailed Image Recognition
Data-Centric Long-Tailed Image Recognition
Yanbiao Ma
Licheng Jiao
Fang Liu
Shuyuan Yang
Xu Liu
Puhua Chen
40
1
0
03 Nov 2023
Robust Data Pruning under Label Noise via Maximizing Re-labeling
  Accuracy
Robust Data Pruning under Label Noise via Maximizing Re-labeling Accuracy
Dongmin Park
Seola Choi
Doyoung Kim
Hwanjun Song
Jae-Gil Lee
NoLa
60
20
0
02 Nov 2023
The Memory Perturbation Equation: Understanding Model's Sensitivity to
  Data
The Memory Perturbation Equation: Understanding Model's Sensitivity to Data
Peter Nickl
Lu Xu
Dharmesh Tailor
Thomas Möllenhoff
Mohammad Emtiyaz Khan
24
10
0
30 Oct 2023
TRIAGE: Characterizing and auditing training data for improved
  regression
TRIAGE: Characterizing and auditing training data for improved regression
Nabeel Seedat
Jonathan Crabbé
Zhaozhi Qian
M. Schaar
13
5
0
29 Oct 2023
Data Optimization in Deep Learning: A Survey
Data Optimization in Deep Learning: A Survey
Ou Wu
Rujing Yao
32
1
0
25 Oct 2023
Data Pruning via Moving-one-Sample-out
Data Pruning via Moving-one-Sample-out
Haoru Tan
Sitong Wu
Fei Du
Yukang Chen
Zhibin Wang
Fan Wang
Xiaojuan Qi
47
31
0
23 Oct 2023
You Only Condense Once: Two Rules for Pruning Condensed Datasets
You Only Condense Once: Two Rules for Pruning Condensed Datasets
Yang He
Lingao Xiao
Joey Tianyi Zhou
37
14
0
21 Oct 2023
Harnessing Dataset Cartography for Improved Compositional Generalization
  in Transformers
Harnessing Dataset Cartography for Improved Compositional Generalization in Transformers
Osman Batur .Ince
Tanin Zeraati
Semih Yagcioglu
Yadollah Yaghoobzadeh
Erkut Erdem
Aykut Erdem
19
1
0
18 Oct 2023
ASP: Automatic Selection of Proxy dataset for efficient AutoML
ASP: Automatic Selection of Proxy dataset for efficient AutoML
Peng Yao
Chao Liao
Jiyuan Jia
Jianchao Tan
Bin Chen
Chengru Song
Di Zhang
13
2
0
17 Oct 2023
Relearning Forgotten Knowledge: on Forgetting, Overfit and Training-Free
  Ensembles of DNNs
Relearning Forgotten Knowledge: on Forgetting, Overfit and Training-Free Ensembles of DNNs
Uri Stern
D. Weinshall
CLL
21
0
0
17 Oct 2023
IDEAL: Influence-Driven Selective Annotations Empower In-Context
  Learners in Large Language Models
IDEAL: Influence-Driven Selective Annotations Empower In-Context Learners in Large Language Models
Shaokun Zhang
Xiaobo Xia
Zhaoqing Wang
Ling-Hao Chen
Jiale Liu
Qingyun Wu
Tongliang Liu
36
20
0
16 Oct 2023
AST: Effective Dataset Distillation through Alignment with Smooth and
  High-Quality Expert Trajectories
AST: Effective Dataset Distillation through Alignment with Smooth and High-Quality Expert Trajectories
Jiyuan Shen
Wenzhuo Yang
Kwok-Yan Lam
DD
29
1
0
16 Oct 2023
KAKURENBO: Adaptively Hiding Samples in Deep Neural Network Training
KAKURENBO: Adaptively Hiding Samples in Deep Neural Network Training
Truong Thao Nguyen
Balazs Gerofi
Edgar Josafat Martinez-Noriega
Franccois Trahay
M. Wahib
24
1
0
16 Oct 2023
Farzi Data: Autoregressive Data Distillation
Farzi Data: Autoregressive Data Distillation
Noveen Sachdeva
Zexue He
Wang-Cheng Kang
Jianmo Ni
D. Cheng
Julian McAuley
DD
19
3
0
15 Oct 2023
Previous
12345...8910
Next