ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.06900
  4. Cited By
Towards a Robust Parameterization for Conditioning Facies Models Using
  Deep Variational Autoencoders and Ensemble Smoother

Towards a Robust Parameterization for Conditioning Facies Models Using Deep Variational Autoencoders and Ensemble Smoother

17 December 2018
S. A. Canchumuni
A. Emerick
M. Pacheco
    OOD
    AI4CE
ArXivPDFHTML

Papers citing "Towards a Robust Parameterization for Conditioning Facies Models Using Deep Variational Autoencoders and Ensemble Smoother"

4 / 4 papers shown
Title
Applications of physics-informed scientific machine learning in
  subsurface science: A survey
Applications of physics-informed scientific machine learning in subsurface science: A survey
A. Sun
H. Yoon
C. Shih
Zhi Zhong
AI4CE
23
9
0
10 Apr 2021
3D CNN-PCA: A Deep-Learning-Based Parameterization for Complex Geomodels
3D CNN-PCA: A Deep-Learning-Based Parameterization for Complex Geomodels
Yimin Liu
L. Durlofsky
AI4CE
16
60
0
16 Jul 2020
Objective-Sensitive Principal Component Analysis for High-Dimensional
  Inverse Problems
Objective-Sensitive Principal Component Analysis for High-Dimensional Inverse Problems
M. Elizarev
A. Mukhin
A. Khlyupin
16
3
0
02 Jun 2020
Data-Space Inversion Using a Recurrent Autoencoder for Time-Series
  Parameterization
Data-Space Inversion Using a Recurrent Autoencoder for Time-Series Parameterization
Su Jiang
L. Durlofsky
19
18
0
30 Apr 2020
1