ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.07519
  4. Cited By
NIPS - Not Even Wrong? A Systematic Review of Empirically Complete
  Demonstrations of Algorithmic Effectiveness in the Machine Learning and
  Artificial Intelligence Literature

NIPS - Not Even Wrong? A Systematic Review of Empirically Complete Demonstrations of Algorithmic Effectiveness in the Machine Learning and Artificial Intelligence Literature

18 December 2018
Franz J. Király
Bilal A. Mateen
R. Sonabend
ArXiv (abs)PDFHTML

Papers citing "NIPS - Not Even Wrong? A Systematic Review of Empirically Complete Demonstrations of Algorithmic Effectiveness in the Machine Learning and Artificial Intelligence Literature"

3 / 3 papers shown
Title
Stratified cross-validation for unbiased and privacy-preserving
  federated learning
Stratified cross-validation for unbiased and privacy-preserving federated learning
R. Bey
Romain Goussault
M. Benchoufi
R. Porcher
FedML
208
12
0
22 Jan 2020
ModelHub.AI: Dissemination Platform for Deep Learning Models
ModelHub.AI: Dissemination Platform for Deep Learning Models
A. Hosny
M. Schwier
Christoph Berger
Evin Pınar Örnek
Mehmet Turan
...
U. Hoffmann
Bjoern Menze
Spyridon Bakas
Andrey Fedorov
Hugo J. W. L. Aerts
VLM
109
19
0
26 Nov 2019
Machine learning and AI research for Patient Benefit: 20 Critical
  Questions on Transparency, Replicability, Ethics and Effectiveness
Machine learning and AI research for Patient Benefit: 20 Critical Questions on Transparency, Replicability, Ethics and Effectiveness
Sebastian J. Vollmer
Bilal A. Mateen
G. Bohner
Franz J. Király
Rayid Ghani
...
Karel G. M. Moons
Gary S. Collins
J. Ioannidis
Chris Holmes
H. Hemingway
168
39
0
21 Dec 2018
1